10 resultados para 2,6-Dichlorindophenol

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF) was the first cytokine to be described, but for 30 years its role in the immune response remained enigmatic. In recent studies, MIF has been found to be a novel pituitary hormone and the first protein identified to be released from immune cells on glucocorticoid stimulation. Once secreted, MIF counterregulates the immunosuppressive effects of steroids and thus acts as a critical component of the immune system to control both local and systemic immune responses. We report herein the x-ray crystal structure of human MIF to 2.6 angstrom resolution. The protein is a trimer of identical subunits. Each monomer contains two antiparallel alpha-helices that pack against a four-stranded beta-sheet. The monomer has an additional two beta-strands that interact with the beta-sheets of adjacent subunits to form the interface between monomers. The three beta-sheets are arranged to form a barrel containing a solvent-accessible channel that runs through the center of the protein along a molecular 3-fold axis. Electrostatic potential maps reveal that the channel has a positive potential, suggesting that it binds negatively charged molecules. The elucidated structure for MIF is unique among cytokines or hormonal mediators, and suggests that this counterregulator of glucocorticoid action participates in novel ligand-receptor interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A spontaneous mutator strain of Escherichia coli (fpg mutY) was used to clone the OGG1 gene of Saccharomyces cerevisiae, which encodes a DNA glycosylase activity that excises 7,8-dihydro-8-oxoguanine (8-OxoG). E. coli (fpg mutY) was transformed by a yeast DNA library, and clones that showed a reduced spontaneous mutagenesis were selected. The antimutator activity was associated with pYSB10, an 11-kbp recombinant plasmid. Cell-free extracts of E. coli (fpg mutY) harboring pYSB10 possess an enzymatic activity that cleaves a 34-mer oligonucleotide containing a single 8-oxoG opposite a cytosine (8-OxoG/C). The yeast DNA fragment of 1.7 kbp that suppresses spontaneous mutagenesis and overproduces the 8-OxoG/C cleavage activity was sequenced and mapped to chromosome XIII. DNA sequencing identified an open reading frame, designated OGG1, which encodes a protein of 376 amino acids with a molecular mass of 43 kDa. The OGG1 gene was inserted in plasmid pUC19, yielding pYSB110. E. coli (fpg) harboring pYSB110 was used to purify the Ogg1 protein of S. cerevisiae to apparent homogeneity. The Ogg1 protein possesses a DNA glycosylase activity that releases 8-OxoG and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. The Ogg1 protein preferentially incises DNA that contains 8-OxoG opposite cytosine (8-OxoG/C) or thymine (8-OxoG/T). In contrast, Ogg1 protein does not incise the duplex where an adenine is placed opposite 8-OxoG (8-OxoG/A). The mechanism of strand cleavage by Ogg1 protein is probably due to the excision of 8-OxoG followed by a beta-elimination at the resulting apurinic/apyrimidinic site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, it has become apparent that salicylic acid (SA) plays an important role in plant defense responses to pathogen attack. Previous studies have suggested that one of SA's mechanisms of action is the inhibition of catalase, resulting in elevated levels of H2O2, which activate defense-related genes. Here we demonstrate that SA also inhibits ascorbate peroxoidase (APX), the other key enzyme for scavenging H2O2. The synthetic inducer of defense responses, 2,6-dichloroisonicotinic acid (INA), was also found to be an effective inhibitor of APX. In the presence of 750 microM ascorbic acid (AsA), substrate-dependent IC50 values of 78 microM and 95 microM were obtained for SA and INA, respectively. Furthermore, the ability of SA analogues to block APX activity correlated with their ability to induce defense-related genes in tobacco and enhance resistance to tobacco mosaic virus. Inhibition of APX by SA appears to be reversible, thus differing from the time-dependent, irreversible inactivation by suicide substrates such as p-aminophenol. In contrast to APX, the guaiacol-utilizing peroxidases, which participate in the synthesis and crosslinking of cell wall components as part of the defense response, are not inhibited by SA or INA. The inhibition of both catalase and APX, but not guaiacol peroxidases, supports the hypothesis that SA-induced defense responses are mediated, in part, through elevated H2O2 levels or coupled perturbations of the cellular redox state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2,6-Dichloroisonicotinic acid (INA) and salicylic acid (SA) are potent inducers of plant defense responses including the synthesis of pathogenesis-related (PR) proteins and the development of enhanced disease resistance. A soluble SA-binding protein has been purified from tobacco with an affinity and specificity of binding that suggest it is a SA receptor. Recently, this protein has been shown to be a catalase whose enzymatic activity is inhibited by SA binding. We have proposed that the resulting increase in intracellular levels of reactive oxygen species plays a role in the induction of defense responses such as PR protein gene expression. Here we report that INA, like SA, binds the SA-binding protein/catalase and inhibits its enzymatic activity. In fact, the dose-response curves for inhibition of catalase by these two compounds are similar. Furthermore, the ability of both INA analogues and SA derivatives to bind and inhibit tobacco catalase correlates with their biological activity to induce PR-1 gene expression and enhance resistance to tobacco mosaic virus. Comparison of the structures of INA, SA, and their analogues reveals several common features that appear to be important for biological activity. Thus, these results not only suggest that INA and SA share the same mechanism of action that involves binding and inhibition of catalase but also further indicate an important role for reactive oxygen species in the induction of certain plant defense responses. This is supported by the demonstration that INA-mediated PR-1 gene activation is suppressed by antioxidants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heme-binding protein 23 kDa (HBP23), a rat isoform of human proliferation-associated gene product (PAG), is a member of the peroxiredoxin family of peroxidases, having two conserved cysteine residues. Recent biochemical studies have shown that HBP23/PAG is an oxidative stress-induced and proliferation-coupled multifunctional protein that exhibits specific bindings to c-Abl protein tyrosine kinase and heme, as well as a peroxidase activity. A 2.6-Å resolution crystal structure of rat HBP23 in oxidized form revealed an unusual dimer structure in which the active residue Cys-52 forms a disulfide bond with conserved Cys-173 from another subunit by C-terminal tail swapping. The active site is largely hydrophobic with partially exposed Cys-173, suggesting a reduction mechanism of oxidized HBP23 by thioredoxin. Thus, the unusual cysteine disulfide bond is involved in peroxidation catalysis by using thioredoxin as the source of reducing equivalents. The structure also provides a clue to possible interaction surfaces for c-Abl and heme. Several significant structural differences have been found from a 1-Cys peroxiredoxin, ORF6, which lacks the C-terminal conserved cysteine corresponding to Cys-173 of HBP23.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits α6 and β1, but not against α1 and α2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against β1, but not against α6 or α2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against α1 integrins impaired only cell adhesion to type IV collagen. Antibodies against α1, α2, α6, and β1, but not α5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins α1 and α2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against α1 and α2, but not α6 and β1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against α1 and α2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-α6 antibodies. Our data indicate that α1 and α2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas α6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen content increased 2- and 4-fold after 1 and 5 days of exercise, with no change in glycogen synthase expression. Protein expression of the glucose transporter GLUT4 and the insulin receptor increased 2-fold after 1 day, with no further change after 5 days of exercise. Insulin-stimulated receptor tyrosine phosphorylation increased 2-fold after 5 days of exercise. Insulin-stimulated tyrosine phosphorylation of insulin-receptor substrate (IRS) 1 and associated phosphatidylinositol (PI) 3-kinase activity increased 2.5- and 3.5-fold after 1 and 5 days of exercise, despite reduced (50%) IRS-1 protein content after 5 days of exercise. After 1 day of exercise, IRS-2 protein expression increased 2.6-fold and basal and insulin-stimulated IRS-2 associated PI 3-kinase activity increased 2.8-fold and 9-fold, respectively. In contrast to IRS-1, IRS-2 expression and associated PI 3-kinase activity normalized to sedentary levels after 5 days of exercise. Insulin-stimulated Akt phosphorylation increased 5-fold after 5 days of exercise. In conclusion, increased insulin-stimulated glucose transport after exercise is not limited to increased GLUT4 expression. Exercise leads to increased expression and function of several proteins involved in insulin-signal transduction. Furthermore, the differential response of IRS-1 and IRS-2 to exercise suggests that these molecules have specialized, rather than redundant, roles in insulin signaling in skeletal muscle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hyperacute rejection of a porcine organ by higher primates is initiated by the binding of xenoreactive natural antibodies of the recipient to blood vessels in the graft leading to complement activation. The majority of these antibodies recognize the carbohydrate structure Gal(alphal,3)Gal (gal epitope) present on cells of pigs. It is possible that the removal or lowering of the number of gal epitopes on the graft endothelium could prevent hyperacute rejection. The Gal(alpha1,3) Gal structure is formed by the enzyme Galbeta1,4GlcNAc3-alpha-D-galactosyltransferase [alpha(1,3)GT; EC 2.4.1.51], which transfers a galactose molecule to terminal N-acetyllactosamine (N-lac) present on various glycoproteins and glycolipids. The N-lac structure might be utilized as an acceptor by other glycosyltransferases such as Galbeta1,4GlcNAc 6-alpha-D-sialyltransferase [alpha(2,6)ST], Galbeta1,4GlcNAc 3-alpha-D-Sialyltransferase [alpha(2,3)ST], or Galbeta 2-alpha-L-fucosyltransferase [alpha(1,2)FT; EC 2.4.1.691, etc. In this report we describe the competition between alpha(1,2)FT and alpha(1,3)GT in cells in culture and the generation of transgenic mice and transgenic pigs that express alpha(1,2)Fr leading to synthesis of Fucalpha,2Galbeta- (H antigen) and a concomitant decrease in the level of Gal(alpha1,3)Gal. As predicted, this resulted in reduced binding of xenoreactive natural antibodies to endothelial cells of transgenic mice and protection from complement mediated lysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fructans play an important role in assimilate partitioning and possibly in stress tolerance in many plant families. Sucrose:fructan 6-fructosyltransferase (6-SFT), an enzyme catalyzing the formation and extension of beta-2,6-linked fructans typical of grasses, was purified from barley (Hordeum vulgare L.). It occurred in two closely similar isoforms with indistinguishable catalytic properties, both consisting of two subunits with apparent masses of 49 and 23 kDa. Oligonucleotides, designed according to the sequences of tryptic peptides from the large subunit, were used to amplify corresponding sequences from barley cDNA. The main fragment generated was cloned and used to screen a barley cDNA expression library. The longest cDNA obtained was transiently expressed in Nicotiana plumbaginifolia protoplasts and shown to encode a functional 6-SFT. The deduced amino acid sequence of the cDNA comprises both subunits of 6-SFT. It has high similarity to plant invertases and other beta-fructosyl hydrolases but only little to bacterial fructosyltransferases catalyzing the same type of reaction as 6-SFT.