29 resultados para 16S rRNA mitochondrial gene

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli mRNA translation is facilitated by sequences upstream and downstream of the initiation codon, called Shine–Dalgarno (SD) and downstream box (DB) sequences, respectively. In E.coli enhancing the complementarity between the DB sequences and the 16S rRNA penultimate stem resulted in increased protein accumulation without a significant affect on mRNA stability. The objective of this study was to test whether enhancing the complementarity of plastid mRNAs downstream of the AUG (downstream sequence or DS) with the 16S rRNA penultimate stem (anti-DS or ADS region) enhances protein accumulation. The test system was the tobacco plastid rRNA operon promoter fused with the E.coli phage T7 gene 10 (T7g10) 5′-untranslated region (5′-UTR) and DB region. Translation efficiency was tested by measuring neomycin phosphotransferase (NPTII) accumulation in tobacco chloroplasts. We report here that the phage T7g10 5′-UTR and DB region promotes accumulation of NPTII up to ∼16% of total soluble leaf protein (TSP). Enhanced mRNA stability and an improved NPTII yield (∼23% of TSP) was obtained from a construct in which the T7g10 5′-UTR was linked with the NPTII coding region via a NheI site. However, replacing the T7g10 DB region with the plastid DS sequence reduced NPTII and mRNA levels to 0.16 and 28%, respectively. Reduced NPTII accumulation is in part due to accelerated mRNA turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epsilon enhancer element is a pyrimidine-rich sequence that increases expression of T7 gene 10 and a number of Escherichia coli mRNAs during initiation of translation and inhibits expression of the recF mRNA during elongation. Based on its complementarity to the 460 region of 16S rRNA, it has been proposed that epsilon exerts its enhancer activity by base pairing to this complementary rRNA sequence. We have tested this model of enhancer action by constructing mutations in the 460 region of 16S rRNA and examining expression of epsilon-containing CAT reporter genes and recF–lacZ fusions in strains expressing the mutant rRNAs. Replacement of the 460 E.coli stem–loop with that of Salmonella enterica serovar Typhimurium or a stem–loop containing a reversal of all 8 bp in the helical region produced fully functional rRNAs with no apparent effect on cell growth or expression of any epsilon-containing mRNA. Our experiments confirm the reported effects of the epsilon elements on gene expression but show that these effects are independent of the sequence of the 460 region of 16S rRNA, indicating that epsilon–rRNA base pairing does not occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microorganisms play an important role in the biogeochemistry of the ocean surface layer, but spatial and temporal structures in the distributions of specific bacterioplankton species are largely unexplored, with the exceptions of those organisms that can be detected by either autofluorescence or culture methods. The use of rRNA genes as genetic markers provides a tool by which patterns in the growth, distribution, and activity of abundant bacterioplankton species can be studied regardless of the ease with which they can be cultured. Here we report an unusual cluster of related 16S rRNA genes (SAR202, SAR263, SAR279, SAR287, SAR293, SAR307) cloned from seawater collected at 250 m in the Sargasso Sea in August 1991, when the water column was highly stratified and the deep chlorophyll maximum was located at a depth of 120 m. Phylogenetic analysis and an unusual 15-bp deletion confirmed that the genes were related to the Green Non-Sulfur phylum of the domain Bacteria. This is the first evidence that representatives of this phylum occur in the open ocean. Oligonucleotide probes were used to examine the distribution of the SAR202 gene cluster in vertical profiles (0-250 m) from the Atlantic and Pacific Oceans, and in discrete (monthly) time series (O and 200 m) (over 30 consecutive months in the Western Sargasso Sea. The data provide robust statistical support for the conclusion that the SAR202 gene cluster is proportionately most abundant at the lower boundary of the deep chlorophyll maximum (P = 2.33 x 10(-5)). These results suggest that previously unsuspected stratification of microbial populations may be a significant factor in the ecology of the ocean surface layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trichomonads are anaerobic flagellated protists that, based on analyses of ribosomal RNA sequences, represent one of the earliest branching lineages among the eukaryotes. The absence of mitochondria in these organisms coupled with their deep phylogenetic position has prompted several authors to suggest that trichomonads, along with other deeply-branching amitochondriate protist groups, diverged from the main eukaryotic lineage prior to the endosymbiotic origin of mitochondria. In this report we describe the presence of a gene in Trichomonas vaginalis specifically related to mitochondrial chaperonin 60 (cpn60). A recent study indicates that a protein immunologically related to cpn60 is located in trichomonad hydrogenosomes. Together, these data provide evidence that ancestors of trichomonads perhaps harbored the endosymbiotic progenitors of mitochondria, but that these evolved into hydrogenosomes early in trichomonad evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial genomes of all vertebrate animals analyzed to date have the same 37 genes, whose arrangement in the circular DNA molecule varies only in the relative position of a few genes. This relative conservation suggests that mitochondrial gene order characters have potential utility as phylogenetic markers for higher-level vertebrate taxa. We report discovery of a mitochondrial gene order that has had multiple independent originations within birds, based on sampling of 137 species representing 13 traditionally recognized orders. This provides evidence of parallel evolution in mitochondrial gene order for animals. Our results indicate operation of physical constraints on mitochondrial gene order changes and support models for gene order change based on replication error. Bird mitochondria have a displaced OL (origin of light-strand replication site) as do various other Reptilia taxa prone to gene order changes. Our findings point to the need for broad taxonomic sampling in using mitochondrial gene order for phylogenetic analyses. We found, however, that the alternative mitochondrial gene orders distinguish the two primary groups of songbirds (order Passeriformes), oscines and suboscines, in agreement with other molecular as well as morphological data sets. Thus, although mitochondrial gene order characters appear susceptible to some parallel evolution because of mechanistic constraints, they do hold promise for phylogenetic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hoatzin (Opisthocomus hoazin) lives in the humid lowlands of northern and central South America, often in riparian habitats. It is a slender bird approximately 65 cm in length, brownish with lighter streaks and buffy tips to the long tail feathers. The small head has a ragged, bristly crest of reddish-brown feathers, and the bare skin of the face is bright blue. It resembles a chachalaca (Ortalis, Cracidae) in size and shape, but its plumage and markings are similar to those of the smaller guira cuckoo (Guira guira). The hoatzin (pronounced Watson) has been a taxonomic puzzle since it was described in 1776. It usually has been viewed as related to the gallinaceous birds, but alliances to other groups have been suggested, including the cuckoos. We present DNA sequence evidence from the 12S and 16S rRNA mitochondrial genes, and from the nuclear gene that codes for the eye lens protein, alpha A-crystallin. The results indicate that the hoatzin is most closely related to the typical cuckoos and that the divergence occurred at or near the base of the cuculiform phylogenetic tree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations at position 912 of Escherichia coli 16S rRNA result in two notable phenotypes. The C-->U transition confers resistance to streptomycin, a translational-error-inducing antibiotic, while a C-->G transversion causes marked retardation of cell growth rate. Starting with the slow-growing G912 mutant, random mutagenesis was used to isolate a second site mutation that restored growth nearly to the wild-type rate. The second site mutation was identified as a G-->C transversion at position 885 in 16S rRNA. Cells containing the G912 mutation had an increased doubling time, abnormal sucrose gradient ribosome/subunit profile, increased sensitivity to spectinomycin, dependence upon streptomycin for growth in the presence of spectinomycin, and slower translation rate, whereas cells with the G912/C885 double mutation were similar to wild type in these assays. Comparative analysis showed there was significant covariation between positions 912 and 885. Thus the second-site suppressor analysis, the functional assays, and the comparative data suggest that the interaction between nt 912 and nt 885 is conserved and necessary for normal ribosome function. Furthermore, the comparative data suggest that the interaction extends to include G885-G886-G887 pairing with C912-U911-C910. An alternative secondary structure element for the central domain of 16S rRNA is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizobia were isolated from nodules off a stand of Lotus corniculatus established with a single inoculant strain, ICMP3153, 7 years earlier in an area devoid of naturalized Rhizobium loti. The isolates showed diversity in growth rate, Spe I fingerprint of genomic DNA, and hybridization pattern to genomic DNA probes. The 19% of isolates that grew at the same rate as strain ICMP3153 were the only isolates that had the same fingerprint as strain ICMP3153. Sequencing of part of the 16S rRNA gene of several diverse isolates confirmed that they were not derived from the inoculant strain. Nevertheless, all non-ICMP3153 strains gave EcoRI and Spe I hybridization patterns identical to ICMP3153 when hybridized to nodulation gene cosmids. Hybridization of digests generated by the very rare cutting enzyme Swa I revealed that the symbiotic DNA region (at least 105 kb) was chromosomally integrated in the strains. The results suggest that the diverse strains arose by transfer of chromosomal symbiotic genes from ICMP3153 to nonsymbiotic rhizobia in the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the period of September 1997 through July 1998, two coelacanth fishes were captured off Manado Tua Island, Sulawesi, Indonesia. These specimens were caught almost 10,000 km from the only other known population of living coelacanths, Latimeria chalumnae, near the Comores. The Indonesian fish was described recently as a new species, Latimeria menadoensis, based on morphological differentiation and DNA sequence divergence in fragments of the cytochrome b and 12S rRNA genes. We have obtained the sequence of 4,823 bp of mitochondrial DNA from the same specimen, including the entire genes for cytochrome b, 12S rRNA, 16S rRNA, four tRNAs, and the control region. The sequence is 4.1% different from the published sequence of an animal captured from the Comores, indicating substantial divergence between the Indonesian and Comorean populations. Nine morphological and meristic differences are purported to distinguish L. menadoensis and L. chalumnae, based on comparison of a single specimen of L. menadoensis to a description of five individuals of L. chalumnae from the Comores. A survey of the literature provided data on 4 of the characters used to distinguish L. menadoensis from L. chalumnae from an additional 16 African coelacanths; for all 4 characters, the Indonesian sample was within the range of variation reported for the African specimens. Nonetheless, L. chalumnae and L. menadoensis appear to be separate species based on divergence of mitochondrial DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ribosomal RNA Operon Copy Number Database (rrndb) is an Internet-accessible database containing annotated information on rRNA operon copy number among prokaryotes. Gene redundancy is uncommon in prokaryotic genomes, yet the rRNA genes can vary from one to as many as 15 copies. Despite the widespread use of 16S rRNA gene sequences for identification of prokaryotes, information on the number and sequence of individual rRNA genes in a genome is not readily accessible. In an attempt to understand the evolutionary implications of rRNA operon redundancy, we have created a phylogenetically arranged report on rRNA gene copy number for a diverse collection of prokaryotic microorganisms. Each entry (organism) in the rrndb contains detailed information linked directly to external websites including the Ribosomal Database Project, GenBank, PubMed and several culture collections. Data contained in the rrndb will be valuable to researchers investigating microbial ecology and evolution using 16S rRNA gene sequences. The rrndb web site is directly accessible on the WWW at http://rrndb.cme.msu.edu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ribosomal protein S7 from Escherichia coli binds to the lower half of the 3′ major domain of 16S rRNA and initiates its folding. It also binds to its own mRNA, the str mRNA, and represses its translation. Using filter binding assays, we show in this study that the same mutations that interfere with S7 binding to 16S rRNA also weaken its affinity for its mRNA. This suggests that the same protein regions are responsible for mRNA and rRNA binding affinities, and that S7 recognizes identical sequence elements within the two RNA targets, although they have dissimilar secondary structures. Overexpression of S7 is known to inhibit bacterial growth. This phenotypic growth defect was relieved in cells overexpressing S7 mutants that bind poorly the str mRNA, confirming that growth impairment is controlled by the binding of S7 to its mRNA. Interestingly, a mutant with a short deletion at the C-terminus of S7 was more detrimental to cell growth than wild-type S7. This suggests that the C-terminal portion of S7 plays an important role in ribosome function, which is perturbed by the deletion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In higher plants, dominant mitochondrial mutations are associated with pollen sterility. This phenomenon is known as cytoplasmic male sterility (CMS). It is thought that the disruption in pollen development is a consequence of mitochondrial dysfunction. To provide definitive evidence that expression of an abnormal mitochondrial gene can interrupt pollen development, a CMS-associated mitochondrial DNA sequence from common bean, orf239, was introduced into the tobacco nuclear genome. Several transformants containing the orf239 gene constructs, with or without a mitochondrial targeting sequence, exhibited a semi sterile or male-sterile phenotype. Expression of the gene fusions in transformed anthers was confirmed using RNA gel blotting, ELISA, and light and electron microscopic immunocytochemistry. Immunocytological analysis showed that the ORF239 protein could associate with the cell wall of aberrant developing microspores. This pattern of extracellular localization was earlier observed in the CMS common bean line containing orf239 in the mitochondrial genome. Results presented here demonstrate that ORF239 causes pollen disruption in transgenic tobacco plants and may do so without targeting of the protein to the mitochondrion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations at position C1054 of 16S rRNA have previously been shown to cause translational suppression in Escherichia coli. To examine the effects of similar mutations in a eukaryote, all three possible base substitutions and a base deletion were generated at the position of Saccharomyces cerevisiae 18S rRNA corresponding to E. coli C1054. In yeast, as in E. coli, both C1054A (rdn-1A) and C1054G (rdn-1G) caused dominant nonsense suppression. Yeast C1054U (rdn-1T) was a recessive antisuppressor, while yeast C1054-delta (rdn-1delta) led to recessive lethality. Both C1054U and two previously described yeast 18S rRNA antisuppressor mutations, G517A (rdn-2) and U912C (rdn-4), inhibited codon-nonspecific suppression caused by mutations in eukaryotic release factors, sup45 and sup35. However, among these only C1054U inhibited UAA-specific suppressions caused by a UAA-decoding mutant tRNA-Gln (SLT3). Our data implicate eukaryotic C1054 in translational termination, thus suggesting that its function is conserved throughout evolution despite the divergence of nearby nucleotide sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A role for rRNA in peptide chain termination was indicated several years ago by isolation of a 168 rRNA (small subunit) mutant of Escherichia coli that suppressed UGA mutations. In this paper, we describe another interesting rRNA mutant, selected as a translational suppressor of the chain-terminating mutant trpA (UGA211) of E. coli. The finding that it suppresses UGA at two positions in trpA and does not suppress the other two termination codons, UAA and UAG, at the same codon positions (or several missense mutations, including UGG, available at one of the two positions) suggests a defect in UGA-specific termination. The suppressor mutation was mapped by plasmid fragment exchanges and in vivo suppression to domain II of the 23S rRNA gene of the rrnB operon. Sequence analysis revealed a single base change of G to A at residue 1093, an almost universally conserved base in a highly conserved region known to have specific interactions with ribosomal proteins, elongation factor G, tRNA in the A-site, and the peptidyltransferase region of 23S rRNA. Several avenues of action of the suppressor mutation are suggested, including altered interactions with release factors, ribosomal protein L11, or 16S rRNA. Regardless of the mechanism, the results indicate that a particular residue in 23S rRNA affects peptide chain termination, specifically in decoding of the UGA termination codon.