49 resultados para 110105 Medical Biochemistry - Nucleic Acids

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insufficient efficacy and/or specificity of antisense oligonucleotides limit their in vivo usefulness. We demonstrate here that a high-affinity DNA analog, locked nucleic acid (LNA), confers several desired properties to antisense agents. Unlike DNA, LNA/DNA copolymers were not degraded readily in blood serum and cell extracts. However, like DNA, the LNA/DNA copolymers were capable of activating RNase H, an important antisense mechanism of action. In contrast to phosphorothioate-containing oligonucleotides, isosequential LNA analogs did not cause detectable toxic reactions in rat brain. LNA/DNA copolymers exhibited potent antisense activity on assay systems as disparate as a G-protein-coupled receptor in living rat brain and an Escherichia coli reporter gene. LNA-containing oligonucleotides will likely be useful for many antisense applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a general method for screening, in solution, the impact of deviations from canonical Watson-Crick composition on the thermodynamic stability of nucleic acid duplexes. We demonstrate how fluorescence resonance energy transfer (FRET) can be used to detect directly free energy differences between an initially formed “reference” duplex (usually a Watson-Crick duplex) and a related “test” duplex containing a lesion/alteration of interest (e.g., a mismatch, a modified, a deleted, or a bulged base, etc.). In one application, one titrates into a solution containing a fluorescently labeled, FRET-active, reference duplex, an unlabeled, single-stranded nucleic acid (test strand), which may or may not compete successfully to form a new duplex. When a new duplex forms by strand displacement, it will not exhibit FRET. The resultant titration curve (normalized fluorescence intensity vs. logarithm of test strand concentration) yields a value for the difference in stability (free energy) between the newly formed, test strand-containing duplex and the initial reference duplex. The use of competitive equilibria in this assay allows the measurement of equilibrium association constants that far exceed the magnitudes accessible by conventional titrimetric techniques. Additionally, because of the sensitivity of fluorescence, the method requires several orders of magnitude less material than most other solution methods. We discuss the advantages of this method for detecting and characterizing any modification that alters duplex stability, including, but not limited to, mutagenic lesions. We underscore the wide range of accessible free energy values that can be defined by this method, the applicability of the method in probing for a myriad of nucleic acid variations, such as single nucleotide polymorphisms, and the potential of the method for high throughput screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade, two tools, one drawn from information theory and the other from artificial neural networks, have proven particularly useful in many different areas of sequence analysis. The work presented herein indicates that these two approaches can be joined in a general fashion to produce a very powerful search engine that is capable of locating members of a given nucleic acid sequence family in either local or global sequence searches. This program can, in turn, be queried for its definition of the motif under investigation, ranking each base in context for its contribution to membership in the motif family. In principle, the method used can be applied to any binding motif, including both DNA and RNA sequence families, given sufficient family size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) helicase, non-structural protein 3 (NS3), is proposed to aid in HCV genome replication and is considered a target for inhibition of HCV. In order to investigate the substrate requirements for nucleic acid unwinding by NS3, substrates were prepared by annealing a 30mer oligonucleotide to a 15mer. The resulting 15 bp duplex contained a single-stranded DNA overhang of 15 nt referred to as the bound strand. Other substrates were prepared in which the 15mer DNA was replaced by a strand of peptide nucleic acid (PNA). The PNA–DNA substrate was unwound by NS3, but the observed rate of strand separation was at least 25-fold slower than for the equivalent DNA–DNA substrate. Binding of NS3 to the PNA–DNA substrate was similar to the DNA–DNA substrate, due to the fact that NS3 initially binds to the single-stranded overhang, which was identical in each substrate. A PNA–RNA substrate was not unwound by NS3 under similar conditions. In contrast, morpholino–DNA and phosphorothioate–DNA substrates were utilized as efficiently by NS3 as DNA–DNA substrates. These results indicate that the PNA–DNA and PNA–RNA heteroduplexes adopt structures that are unfavorable for unwinding by NS3, suggesting that the unwinding activity of NS3 is sensitive to the structure of the duplex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that Y box-binding protein-1 (YB-1) binds preferentially to cisplatin-modified Y box sequences. Based on structural and biochemical data, we predicted that this protein binds single-stranded nucleic acids. In the present study we confirmed the prediction and also discovered some unexpected functional features of YB-1. We found that the cold shock domain of the protein is necessary but not sufficient for double-stranded DNA binding while the C-tail domain interacts with both single-stranded DNA and RNA independently of the cold shock domain. In an in vitro translation system the C-tail domain of the protein inhibited translation but the cold shock domain did not. Both in vitro pull-down and in vivo co-immunoprecipitation assays revealed that YB-1 can form a homodimer. Deletion analysis mapped the C-tail domain of the protein as the region of homodimerization. We also characterized an intrinsic 3′→5′ DNA exonuclease activity of the protein. The region between residues 51 and 205 of its 324-amino acid extent is required for full exonuclease activity. Our findings suggest that YB-1 functions in regulating DNA/RNA transactions and that these actions involve different domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new thermodynamic database for normal and modified nucleic acids has been developed. This Thermodynamic Database for Nucleic Acids (NTDB) includes sequence, structure and thermodynamic information as well as experimental methods and conditions. In this release, there are 1851 sequences containing both normal and modified nucleic acids. A user-friendly web-based interface has been developed to allow data searching under different conditions. Useful thermodynamic tools for the study of nucleic acids have been collected and linked for easy usage. NTDB is available at http://ntdb.chem.cuhk.edu.hk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of potentially catalytic groups in DNA is of interest for the in vitro selection of novel deoxyribozymes. A series of 10 C5-modified analogues of 2′-deoxyuridine triphosphate have been synthesised that possess side chains of differing flexibility and bearing a primary amino or imidazole functionality. For each series of nucleotide analogues differing degrees of flexibility of the C5 side chain was achieved through the use of alkynyl, alkenyl and alkyl moieties. The imidazole function was conjugated to these C5-amino-modified nucleotides using either imidazole 4-acetic acid or imidazole 4-acrylic acid (urocanic acid). The substrate properties of the nucleotides (fully replacing dTTP) with Taq polymerase during PCR have been investigated in order to evaluate their potential applications for in vitro selection experiments. 5-(3-Aminopropynyl)dUTP and 5-(E-3-aminopropenyl)dUTP and their imidazole 4-acetic acid- and urocanic acid-modified conjugates were found to be substrates. In contrast, C5-amino-modified dUTPs with alkane or Z-alkene linkers and their corresponding conjugates were not substrates. The incorporation of these analogues during PCR has been confirmed by inhibition of restriction enzyme digestion using XbaI and by mass spectrometry of the PCR products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of potentially catalytic groups into DNA is of interest for the in vitro selection of novel deoxyribozymes. We have devised synthetic routes to a series of three C7 modified 7-deaza-dATP derivatives with pendant aminopropyl, Z-aminopropenyl and aminopropynyl side chains. These modified triphosphates have been tested as substrates for Taq polymerase during PCR. All the modifications are tolerated by this enzyme, with the aminopropynyl side chain giving the best result. Most protein enzymes have more than one type of catalytic group located in their active site. By using C5-imidazolyl-modified dUTPs together with 3-(aminopropynyl)-7-deaza-dATP in place of the natural nucleotides dTTP and dATP, we have demonstrated the simultaneous incorporation of both amino and imidazolyl moieties into a DNA molecule during PCR. The PCR product containing the four natural bases was fully digested by XbaI, while PCR products containing the modified 7-deaza-dATP analogues were not cleaved. Direct evidence for the simultaneous incorporation during PCR of an imidazole-modified dUTP and an amino-modified 7-deaza-dATP has been obtained using mass spectrometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbohydrates in biological systems are often associated with specific recognition and signaling processes leading to important biological functions and diseases. Considerable efforts have been directed toward understanding and mimicking the recognition processes and developing effective agents to control the processes. The pace of discovery research in glycobiology and development of carbohydrate-based therapeutics, however, has been relatively slow due to the lack of appropriate strategies and methods available for carbohydrate-related research. This review summarizes some of the most recent developments in the field, with particular emphasis on work from our laboratories regarding the use of chemoenzymatic strategies to tackle the carbohydrate recognition problem. Highlights include the study of selectin-carbohydrate and aminoglycoside-RNA interactions and development of agents for the intervention of these recognition processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery that peptide nucleic acids (PNA) mimic DNA and RNA by forming complementary duplex structures following Watson–Crick base pairing rules opens fields in biochemistry, diagnostics, and medicine for exploration. Progress requires the development of modified PNA duplexes having unique and well defined properties. We find that anthraquinone groups bound to internal positions of a PNA oligomer intercalate in the PNA–DNA hybrid. Their irradiation with near-UV light leads to electron transfer and oxidative damage at remote GG doublets on the complementary DNA strand. This behavior mimics that observed in related DNA duplexes and provides the first evidence for long range electron (hole) transport in PNA–DNA hybrid. Analysis of the mechanism for electron transport supports hole hopping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide nucleic acids (PNA) are mimics with normal bases connected to a pseudopeptide chain that obey Watson–Crick rules to form stable duplexes with itself and natural nucleic acids. This has focused attention on PNA as therapeutic or diagnostic reagents. Duplexes formed with PNA mirror some but not all properties of DNA. One fascinating aspect of PNA biochemistry is their reaction with enzymes. Here we show an enzyme reaction that operates effectively on a PNA/DNA hybrid duplex. A DNA oligonucleotide containing a cis, syn-thymine [2+2] dimer forms a stable duplex with PNA. The hybrid duplex is recognized by photolyase, and irradiation of the complex leads to the repair of the thymine dimer. This finding provides insight into the enzyme mechanism and provides a means for the selective repair of thymine photodimers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Biomolecular Interaction Network Database (BIND; http://binddb.org) is a database designed to store full descriptions of interactions, molecular complexes and pathways. Development of the BIND 2.0 data model has led to the incorporation of virtually all components of molecular mechanisms including interactions between any two molecules composed of proteins, nucleic acids and small molecules. Chemical reactions, photochemical activation and conformational changes can also be described. Everything from small molecule biochemistry to signal transduction is abstracted in such a way that graph theory methods may be applied for data mining. The database can be used to study networks of interactions, to map pathways across taxonomic branches and to generate information for kinetic simulations. BIND anticipates the coming large influx of interaction information from high-throughput proteomics efforts including detailed information about post-translational modifications from mass spectrometry. Version 2.0 of the BIND data model is discussed as well as implementation, content and the open nature of the BIND project. The BIND data specification is available as ASN.1 and XML DTD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous molecular mechanics calculations suggest that strands of peptide nucleic acids (PNAs) and complementary oligonucleotides form antiparallel duplexes stabilized by interresidue hydrogen bonds. In the computed structures, the amide carbonyl oxygen nearest the nucleobase (O7') forms an interresidue hydrogen bond with the backbone amide proton of the following residue, (n + 1)H1'. Of the 10 published two dimensional 1H NMR structures of a hexameric PNA.RNA heteroduplex. PNA(GAACTC).r(GAGUUC), 9 exhibit two to five potential interresidue hydrogen bonds. In our minimized average structure, created from the coordinates of these 10 NMR structures, three of the five possible interresidue hydrogen bond sites within the PNA backbone display the carbonyl oxygen (O7') and the amide proton (n + 1)H1' distances and N1'-H1'-(n - 1)O7' angles optimal for hydrogen bond formation. The finding of these interresidue hydrogen bonds supports the results of our previous molecular mechanics calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyamide ("peptide") nucleic acids (PNAs) are molecules with antigene and antisense effects that may prove to be effective neuropharmaceuticals if these molecules are enabled to undergo transport through the brain capillary endothelial wall, which makes up the blood-brain barrier in vivo. The model PNA used in the present studies is an 18-mer that is antisense to the rev gene of human immunodeficiency virus type 1 and is biotinylated at the amino terminus and iodinated at a tyrosine residue near the carboxyl terminus. The biotinylated PNA was linked to a conjugate of streptavidin (SA) and the OX26 murine monoclonal antibody to the rat transferrin receptor. The blood-brain barrier is endowed with high transferrin receptor concentrations, enabling the OX26-SA conjugate to deliver the biotinylated PNA to the brain. Although the brain uptake of the free PNA was negligible following intravenous administration, the brain uptake of the PNA was increased at least 28-fold when the PNA was bound to the OX26-SA vector. The brain uptake of the PNA bound to the OX26-SA vector was 0.1% of the injected dose per gram of brain at 60 min after an intravenous injection, approximating the brain uptake of intravenously injected morphine. The PNA bound to the OX26-SA vector retained the ability to bind to synthetic rev mRNA as shown by RNase protection assays. In summary, the present studies show that while the transport of PNAs across the blood-brain barrier is negligible, delivery of these potential neuropharmaceutical drugs to the brain may be achieved by coupling them to vector-mediated peptide-drug delivery systems.