2 resultados para 10-PHENANTHROLINE-5
em National Center for Biotechnology Information - NCBI
The Rat Myosin myr 5 Is a GTPase-activating Protein for Rho In Vivo: Essential Role of Arginine 1695
Resumo:
myr 5 is an unconventional myosin (class IX) from rat that contains a Rho-family GTPase-activating protein (GAP) domain. Herein we addressed the specificity of the myr 5 GAP activity, the molecular mechanism by which GAPs activate GTP hydrolysis, the consequences of myr 5 overexpression in living cells, and its subcellular localization. The myr 5 GAP activity exhibits a high specificity for Rho. To achieve similar rates of GTPase activation for RhoA, Cdc42Hs, and Rac1, a 100-fold or 1000-fold higher concentration of recombinant myr 5 GAP domain was needed for Cdc42Hs or Rac1, respectively, as compared with RhoA. Cell lysates from Sf9 insect cells infected with recombinant baculovirus encoding myr 5 exhibited increased GAP activity for RhoA but not for Cdc42Hs or Rac1. Analysis of Rho-family GAP domain sequences for conserved arginine residues that might contribute to accelerate GTP hydrolysis revealed a single conserved arginine residue. Mutation of the corresponding arginine residue in the myr 5 GAP domain to a methionine (M1695) virtually abolished Rho-GAP activity. Expression of myr 5 in Sf9 insect cells induced the formation of numerous long thin processes containing occasional varicosities. Such morphological changes were dependent on the myr 5 Rho-GAP activity, because they were induced by expressing the myr 5 tail or just the myr 5 Rho-GAP domain but not by expressing the myr 5 myosin domain. Expression of myr 5 in mammalian normal rat kidney (NRK) or HtTA-1 HeLa cells induced a loss of actin stress fibers and focal contacts with concomitant morphological changes and rounding up of the cells. Similar morphological changes were observed in HtTA-1 HeLa cells expressing just the myr 5 Rho-GAP domain but not in cells expressing myr 5 M1695. These morphological changes induced by myr 5 were inhibited by coexpression of RhoV14, which is defective in GTP hydrolysis, but not by RhoI117. myr 5 was localized in dynamic regions of the cell periphery, in the perinuclear region in the Golgi area, along stress fibers, and in the cytosol. These results demonstrate that myr 5 has in vitro and in vivo Rho-GAP activity. No evidence for a Rho effector function of the myr 5 myosin domain was obtained.
Resumo:
Biotinylated lactose permease from Escherichia coli containing a single-cysteine residue at position 330 (helix X) or at position 147, 148, or 149 (helix V) was purified by avidin-affinity chromatography and derivatized with 5-(alpha-bromoacetamido)-1,10-phenanthroline-copper [OP(Cu)]. Studies with purified, OP(Cu)-labeled Leu-330 --> Cys permease in dodecyl-beta-D-maltopyranoside demonstrate that after incubation in the presence of ascorbate, cleavage products of approximately 19 and 6-8 kDa are observed on immunoblots with anti-C-terminal antibody. Remarkably, the same cleavage products are observed with permease embedded in the native membrane. Comparison with the C-terminal half of the permease expressed independently as a standard indicates that the 19-kDa product results from cleavage near the cytoplasmic end of helix VII, whereas the 6- to 8-kDa fragment probably results from fragmentation near the cytoplasmic end of helix XI. Results are entirely consistent with a tertiary-structure model of the C-terminal half of the permease derived from earlier site-directed fluorescence and site-directed mutagenesis studies. Similar studies with OP(Cu)-labeled Cys-148 permease exhibit cleavage products at approximately 19 kDa and at 15-16 kDa. The larger fragment probably reflects cleavage at a site near the cytoplasmic end of helix VII, whereas the 15- to 16-kDa fragment is consistent with cleavage near the cytoplasmic end of helix VIII. When OP(Cu) is moved 100 degrees to position 149 (Val-149 --> Cys permease), a single product is observed at 19 kDa, suggesting fragmentation at the cytoplasmic end of helix VII. However, when the reagent is moved 100 degrees in the other direction to position 147 (Gly-147 --> Cys permease), cleavage is not observed. The results suggest that helix V is in close proximity to helices VII and VIII with position 148 in the interface between the helices, position 149 facing helix VII, and position 147 facing the lipid bilayer.