11 resultados para 1,3-diol

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and biosynthesis of poly-N-acetyllactosamine display a dramatic change during development and oncogenesis. Poly-N-acetyllactosamines are also modified by various carbohydrate residues, forming functional oligosaccharides such as sialyl Lex. Herein we describe the isolation and functional expression of a cDNA encoding β-1,3-N-acetylglucosaminyltransferase (iGnT), an enzyme that is essential for the formation of poly-N-acetyllactosamine. For this expression cloning, Burkitt lymphoma Namalwa KJM-1 cells were transfected with cDNA libraries derived from human melanoma and colon carcinoma cells. Transfected Namalwa cells overexpressing the i antigen were continuously selected by fluorescence-activated cell sorting because introduced plasmids containing Epstein–Barr virus replication origin can be continuously amplified as episomes. Sibling selection of plasmids recovered after the third consecutive sorting resulted in a cDNA clone that directs the increased expression of i antigen on the cell surface. The deduced amino acid sequence indicates that this protein has a type II membrane protein topology found in almost all mammalian glycosyltransferases cloned to date. iGnT, however, differs in having the longest transmembrane domain among glycosyltransferases cloned so far. The iGnT transcript is highly expressed in fetal brain and kidney and adult brain but expressed ubiquitously in various adult tissues. The expression of the presumed catalytic domain as a fusion protein with the IgG binding domain of protein A enabled us to demonstrate that the cDNA encodes iGnT, the enzyme responsible for the formation of GlcNAcβ1 → 3Galβ1 → 4GlcNAc → R structure and poly-N-acetyllactosamine extension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperacute rejection of pig organs by humans involves the interaction of Galα(1,3)Gal with antibodies and complement. Strategies to reduce the amount of xenoantigen Galα(1,3)Gal were investigated by overexpression of human lysosomal α-galactosidase in cultured porcine cells and transgenic mice. The overexpression of human α-galactosidase in cultured porcine endothelial cells and COS cells resulted in a 30-fold reduction of cell surface Galα(1,3)Gal and a 10-fold reduction in cell reactivity with natural human antibodies. Splenocytes from transgenic mice overexpressing human α-galactosidase showed only a 15–25% reduction in binding to natural human anti-Galα(1,3)Gal antibodies; however, this decrease was functionally significant as demonstrated by reduced susceptibility to human antibody-mediated lysis. However, because there is residual Galα(1,3)Gal and degalactosylation results in the exposure of N-acetyllactosamine residues and potential new xenoepitopes, using α-galactosidase alone is unlikely to overcome hyperacute rejection. We previously reported that mice overexpressing human α1,2-fucosyltransferase as a transgene had ≈90% reduced Galα(1,3)Gal levels due to masking of the xenoantigen by fucosylation; we evaluated the effect of overexpressing α-galactosidase and α1,2-fucosyltransferase on Galα(1,3)Gal levels. Galα(1,3)Gal-positive COS cells expressing α1,3-galactosyltransferase, α1,2-fucosyltransferase, and α-galactosidase showed negligible cell surface staining and were not susceptible to lysis by human serum containing antibody and complement. Thus, α1,2-fucosyltransferase and α-galactosidase effectively reduced the expression of Galα(1,3)Gal on the cell surface and could be used to produce transgenic pigs with negligible levels of cell surface Galα(1,3)Gal, thereby having no reactivity with human serum and improving graft survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We noted previously that certain aminoglycoside antibiotics inhibit the binding of coatomer to Golgi membranes in vitro. The inhibition is mediated in part by two primary amino groups present at the 1 and 3 positions of the 2-deoxystreptamine moiety of the antibiotics. These two amines appear to mimic the ε-amino groups present in the two lysine residues of the KKXX motif that is known to bind coatomer. Here we report the effects of 1,3-cyclohexanebis(methylamine) (CBM) on secretion in vivo, a compound chosen for study because it contains primary amino groups that resemble those in 2-deoxystreptamine and it should penetrate lipid bilayers more readily than antibiotics. CBM inhibited coatomer binding to Golgi membranes in vitro and in vivo and inhibited secretion by intact cells. Despite depressed binding of coatomer in vivo, the Golgi complex retained its characteristic perinuclear location in the presence of CBM and did not fuse with the endoplasmic reticulum (ER). Transport from the ER to the Golgi was also not blocked by CBM. These data suggest that a full complement of coat protein I (COPI) on membranes is not critical for maintenance of Golgi integrity or for traffic from the ER to the Golgi but is necessary for transport through the Golgi to the plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface glycosylation of endothelial cells is relevant to various processes including coagulation, inflammation, metastasis, and lymphocyte homing. One of the essential sugars involved in these processes is fucose linked α1→3 to N-acetylglucosamine. A family of α1,3-fucosyltransferases (FucTs) called FucT-III, IV, V, VI, VII, and IX is able to catalyze such fucosylations. Reverse transcription–PCR analysis revealed that human umbilical vein endothelial cells express all of the FucTs except FucT-IX. The predominant activity, as inferred by acceptor specificity of enzyme activity in cell lysates, is compatible with the presence of FucT-VI. By using an antibody to recombinant soluble FucT-VI, the enzyme colocalized with β4-galactosyltransferase-1 to the Golgi apparatus. By using a polyclonal antiserum raised against a 17-aa peptide of the variable (stem) region of the FucT-VI, immunocytochemical staining of FucT-VI was restricted to Weibel–Palade bodies, as determined by colocalization with P-selectin and von Willebrand factor. SDS/PAGE immunoblotting and amino acid sequencing of internal peptides confirmed the identity of the antigen isolated by the peptide-specific antibody as FucT-VI. Storage of a fucosyltransferase in Weibel–Palade bodies suggests a function independent of Golgi-associated glycosylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclic β-(1→3),β-(1→6)-d-glucan synthesis locus of Bradyrhizobium japonicum is composed of at least two genes, ndvB and ndvC. Mutation in either gene affects glucan synthesis, as well as the ability of the bacterium to establish a successful symbiotic interaction with the legume host soybean (Glycine max). B. japonicum strain AB-14 (ndvB::Tn5) does not synthesize β-glucans, and strain AB-1 (ndvC::Tn5) synthesizes a cyclic β-glucan lacking β-(1→6)-glycosidic bonds. We determined that the structure of the glucan synthesized by strain AB-1 is cyclodecakis-(1→3)-β-d-glucosyl, a cyclic β-(1→3)-linked decasaccharide in which one of the residues is substituted in the 6 position with β-laminaribiose. Cyclodecakis-(1→3)-β-d-glucosyl did not suppress the fungal β-glucan-induced plant defense response in soybean cotyledons and had much lower affinity for the putative membrane receptor protein than cyclic β-(1→3),β-(1→6)-glucans produced by wild-type B. japonicum. This is consistent with the hypothesis presented previously that the wild-type cyclic β-glucans may function as suppressors of a host defense response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathogenesis-related proteins from intercellular fluid washings of stressed barley (Hordeum vulgare L.) leaves were analyzed to determine their binding to various water-insoluble polysaccharides. Three proteins (19, 16, and 15 kD) bound specifically to several water-insoluble β-1,3-glucans. Binding of the barley proteins to pachyman occurred quickly at 22°C at pH 5.0, even in the presence of 0.5 m NaCl, 0.2 m urea, and 1% (v/v) Triton X-100. Bound barley proteins were released by acidic treatments or by boiling in sodium dodecyl sulfate. Acid-released barley proteins could bind again specifically and singly to pachyman. Water-soluble laminarin and carboxymethyl-pachyman competed for the binding of the barley proteins to pachyman. The N-terminal sequence of the 19-kD barley β-1,3-glucan-binding protein showed near identity to the barley seed protein BP-R and high homology to other thaumatin-like (TL) permatins. The 16-kD barley protein was also homologous to TL proteins, whereas the 15-kD barley protein N-terminal sequence was identical to the pathogenesis-related Hv-1 TL protein. Antifungal barley protein BP-R and corn (Zea mays) zeamatin were isolated by binding to pachyman. Two extracellular proteins from stressed pea (Pisum sativum L.) also bound to pachyman and were homologous to TL proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Class I isoforms of β-1,3-glucanases (βGLU I) and chitinases (CHN I) are antifungal, vacuolar proteins implicated in plant defense. Tobacco (Nicotiana tabacum L.) βGLU I and CHN I usually exhibit tightly coordinated developmental, hormonal, and pathogenesis-related regulation. Both enzymes are induced in cultured cells and tissues of cultivar Havana 425 tobacco by ethylene and are down-regulated by combinations of the growth hormones auxin and cytokinin. We report a novel pattern of βGLU I and CHN I regulation in cultivar Havana 425 tobacco pith-cell suspensions and cultured leaf explants. Abscisic acid (ABA) at a concentration of 10 μm markedly inhibited the induction of βGLU I but not of CHN I. RNA-blot hybridization and immunoblot analysis showed that only class I isoforms of βGLU and CHN are induced in cell culture and that ABA inhibits steady-state βGLU I mRNA accumulation. Comparable inhibition of β-glucuronidase expression by ABA was observed for cells transformed with a tobacco βGLU I gene promoter/β-glucuronidase reporter gene fusion. Taken together, the results strongly suggest that ABA down-regulates transcription of βGLU I genes. This raises the possibility that some of the ABA effects on plant-defense responses might involve βGLU I.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the molecular cloning of the first beta-1,3 glucanase from animal tissue. Three peptide sequences were obtained from beta-1,3 glucanase that had been purified from eggs of the sea urchin Strongylocentrotus purpuratus and the gene was cloned by PCR using oligonucleotides deduced from the peptide sequences. The full-length cDNA shows a predicted enzyme structure of 499 aa with a hydrophobic signal sequence. A 3.2-kb message is present in eggs, during early embryogenesis, and in adult gut tissue. A polyclonal antibody to the native 68-kDa enzyme recognizes a single band during early embryogenesis that reappears in the adult gut, and recognizes a 57-kDa fusion protein made from a full-length cDNA clone for beta-1,3 glucanase. The identity of this molecule as beta-1,3 glucanase is confirmed by sequence homology, by the presence of all three peptide sequences in the deduced amino acid sequence, and by the recognition of the bacterial fusion protein by the antibody directed against the native enzyme. Data base searches show significant homology at the amino acid level to beta-1,3 glucanases from two species of bacteria and a clotting factor from the horseshoe crab. The homology with the bacteria is centered in a 304-aa region in which there are seven scattered regions of high homology between the four divergent species. These four species were also found to have two homologous regions in common with more distantly related plant, fungal, and bacterial proteins. A global phylogeny based on these regions strongly suggests that the glucanases are a very ancient family of genes. In particular, there is an especially deep split within genes taken from the bacterial genus Bacillus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The codon usage of a hybrid bacterial gene encoding a thermostable (1,3-1,4)-beta-glucanase was modified to match that of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene. Both the modified and unmodified bacterial genes were fused to a DNA segment encoding the barley high-pI alpha-amylase signal peptide downstream of the barley (1,3-1,4)-beta-glucanase isoenzyme EII gene promoter. When introduced into barley aleurone protoplasts, the bacterial gene with adapted codon usage directed synthesis of heat stable (1,3-1,4)-beta-glucanase, whereas activity of the heterologous enzyme was not detectable when protoplasts were transfected with the unmodified gene. In a different expression plasmid, the codon modified bacterial gene was cloned downstream of the barley high-pI alpha-amylase gene promoter and signal peptide coding region. This expression cassette was introduced into immature barley embryos together with plasmids carrying the bar and the uidA genes. Green, fertile plants were regenerated and approximately 75% of grains harvested from primary transformants synthesized thermostable (1,3-1,4)-beta-glucanase during germination. All three trans genes were detected in 17 progenies from a homozygous T1 plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chloroethylnitrosourea (CNU) alkylating agents are commonly used for cancer chemotherapy, but their usefulness is limited by severe bone marrow toxicity that causes the cumulative depletion of all hematopoietic lineages (pancytopenia). Bone marrow CNU sensitivity is probably due to the inefficient repair of CNU-induced DNA damage; relative to other tissues, bone marrow cells express extremely low levels of the O6-methylguanine DNA methyltransferase (MGMT) protein that repairs cytotoxic O6-chloroethylguanine DNA lesions. Using a simplified recombinant retroviral vector expressing the human MGMT gene under control of the phosphoglycerate kinase promoter (PGK-MGMT) we increased the capacity of murine bone marrow-derived cells to repair CNU-induced DNA damage. Stable reconstitution of mouse bone marrow with genetically modified, MGMT-expressing hematopoietic stem cells conferred considerable resistance to the cytotoxic effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a CNU commonly used for chemotherapy. Bone marrow harvested from mice transplanted with PGK-MGMT-transduced cells showed extensive in vitro BCNU resistance. Moreover, MGMT expression in mouse bone marrow conferred in vivo resistance to BCNU-induced pancytopenia and significantly reduced BCNU-induced mortality due to bone marrow hypoplasia. These data demonstrate that increased DNA alkylation repair in primitive hematopoietic stem cells confers multilineage protection from the myelosuppressive effects of BCNU and suggest a possible approach to protecting cancer patients from CNU chemotherapy-related toxicity.