11 resultados para 1,3,5-Triazine
em National Center for Biotechnology Information - NCBI
Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats
Resumo:
Recent evidence in vivo indicates that spontaneously hypertensive rats (SHR) exhibit an increase in oxyradical production in and around microvascular endothelium. This study is aimed to examine whether xanthine oxidase plays a role in overproduction of oxidants and thereby may contribute to hypertensive states as a consequence of the increasing microvascular tone. The xanthine oxidase activity in SHR was inhibited by dietary supplement of tungsten (0.7 g/kg) that depletes molybdenum as a cofactor for the enzyme activity as well as by administration of (−)BOF4272 [(−)-8-(3-methoxy-4-phenylsulfinylphenyl)pyrazolo(1,5-α)-1,3,5-triazine-4-monohydrate], a synthetic inhibitor of the enzyme. The characteristic elevation of mean arterial pressure in SHR was normalized by the tungsten diet, whereas Wistar Koto (WKY) rats displayed no significant alteration in the pressure. Multifunctional intravital videomicroscopy in mesentery microvessels with hydroethidine, an oxidant-sensitive fluoroprobe, showed that SHR endothelium exhibited overproduction of oxyradicals that coincided with the elevated arteriolar tone as compared with WKY rats. The tungsten diet significantly repressed these changes toward the levels observed in WKY rats. The activity of oxyradical-producing form of xanthine oxidase in the mesenteric tissue of SHR was ≈3-fold greater than that of WKY rats, and pretreatment with the tungsten diet eliminated detectable levels of the enzyme activity. The inhibitory effects of the tungsten diet on the increasing blood pressure and arteriolar tone in SHR were also reproducible by administration of (−)BOF4272. These results suggest that xanthine oxidase accounts for a putative source of oxyradical generation that is associated with an increasing arteriolar tone in this form of hypertension.
Resumo:
Several inositol-containing compounds play key roles in receptor-mediated cell signaling events. Here, we describe a function for a specific inositol polyphosphate, d-myo-inositol 1,4,5,6-tetrakisphosphate [Ins(1,4,5,6)P4], that is produced acutely in response to a receptor-independent process. Thus, infection of intestinal epithelial cells with the enteric pathogen Salmonella, but not with other invasive bacteria, induced a multifold increase in Ins(1,4,5,6)P4 levels. To define a specific function of Ins(1,4,5,6)P4, a membrane-permeant, hydrolyzable ester was used to deliver it to the intracellular compartment, where it antagonized epidermal growth factor (EGF)-induced inhibition of calcium-mediated chloride (Cl−) secretion (CaMCS) in intestinal epithelia. This EGF function is likely mediated through a phosphoinositide 3-kinase (PtdIns3K)-dependent mechanism because the EGF effects are abolished by wortmannin, and three different membrane-permeant esters of the PtdIns3K product phosphatidylinositol 3,4,5-trisphosphate mimicked the EGF effect on CaMCS. We further demonstrate that Ins(1,4,5,6)P4 antagonized EGF signaling downstream of PtdIns3K because Ins(1,4,5,6)P4 interfered with the PtdInsP3 effect on CaMCS without affecting PtdIns3K activity. Thus, elevation of Ins(1,4,5,6)P4 in Salmonella-infected epithelia may promote Cl− flux by antagonizing EGF inhibition mediated through PtdIns3K and PtdInsP3.
Resumo:
We have previously shown that Y box-binding protein-1 (YB-1) binds preferentially to cisplatin-modified Y box sequences. Based on structural and biochemical data, we predicted that this protein binds single-stranded nucleic acids. In the present study we confirmed the prediction and also discovered some unexpected functional features of YB-1. We found that the cold shock domain of the protein is necessary but not sufficient for double-stranded DNA binding while the C-tail domain interacts with both single-stranded DNA and RNA independently of the cold shock domain. In an in vitro translation system the C-tail domain of the protein inhibited translation but the cold shock domain did not. Both in vitro pull-down and in vivo co-immunoprecipitation assays revealed that YB-1 can form a homodimer. Deletion analysis mapped the C-tail domain of the protein as the region of homodimerization. We also characterized an intrinsic 3′→5′ DNA exonuclease activity of the protein. The region between residues 51 and 205 of its 324-amino acid extent is required for full exonuclease activity. Our findings suggest that YB-1 functions in regulating DNA/RNA transactions and that these actions involve different domains.
Resumo:
In extracts of immature soybean (Glycine max [L.] Merr.) seeds inositol tetrakisphosphate was formed from [3H]inositol 1,3,4-trisphosphate but not from [3H]inositol 1,4,5-trisphosphate. Inositol 1,3,4-trisphosphate kinase was purified to a specific activity of 3.55 min−1 mg−1 by polyethylenimine clarification and anion-exchange chromatography. The partially purified enzyme converted [3H]inositol 1,3,4-trisphosphate to inositol 1,3,4,5-tetrakisphosphate as the major product and inositol 1,3,4,6- and/or 1,2,3,4-tetrakisphosphate as the minor product. Subsequent experiments revealed a separate inositol 1,3,4,5-tetrakisphosphate 6-kinase activity, which could link these enzymes to inositol hexakisphosphate synthesis via the previously reported inositol 1,3,4,5,6-pentakisphosphate 2-kinase. The apparent Km values for inositol 1,3,4-trisphosphate kinase were 200 ± 0 nm for inositol 1,3,4-trisphosphate and 171 ± 4 μm for ATP, and the reaction was not reversible. The kinetics were such that no activity could be detected using unlabeled inositol 1,3,4-trisphosphate and [γ-32P]ATP, which suggested that other kinases may have been observed when less purified fractions were incubated with radiolabeled ATP. Inositol 1,3,4-trisphosphate kinase was nonspecifically inhibited more than 80% by various inositol polyphosphates at a concentration of 100 μm.
Resumo:
It has been reported that the inositol 1,4,5-trisphosphate receptor subtype 3 is expressed in islet cells and is localized to both insulin and somatostatin granules [Blondel, O., Moody, M. M., Depaoli, A. M., Sharp, A. H., Ross, C. A., Swift, H. & Bell, G. I. (1994) Proc. Natl. Acad. Sci. USA 91, 7777-7781]. This subcellular localization was based on electron microscope immunocytochemistry using antibodies (affinity-purified polyclonal antiserum AB3) directed to a 15-residue peptide of rat inositol trisphosphate receptor subtype 3. We now show that these antibodies cross-react with rat, but not human, insulin. Accordingly, the anti-inositol trisphosphate receptor subtype 3 (AB3) antibodies label electron dense cores of mature (insulin-rich) granules of rat pancreatic beta cells, and rat granule labeling was blocked by preabsorption of the AB3 antibodies with rat insulin. The immunostaining of immature, Golgi-associated proinsulin-rich granules with AB3 antibodies was very weak, indicating that cross-reactivity is limited to the hormone and not its precursor. Also, the AB3 antibodies labeled pure rat insulin crystals grown in vitro but failed to stain crystals grown from pure human insulin. By immunoprecipitation, the antibodies similarly displayed a higher affinity for rat than for human insulin. We could not confirm the labeling of somatostatin granules using AB3 antibodies.
Resumo:
Rat basophilic leukemia (RBL-2H3) cells predominantly express the type II receptor for inositol 1,4,5-trisphosphate (InsP3), which operates as an InsP3-gated calcium channel. In these cells, cross-linking the high-affinity immunoglobulin E receptor (FcεR1) leads to activation of phospholipase C γ isoforms via tyrosine kinase- and phosphatidylinositol 3-kinase-dependent pathways, release of InsP3-sensitive intracellular Ca2+ stores, and a sustained phase of Ca2+ influx. These events are accompanied by a redistribution of type II InsP3 receptors within the endoplasmic reticulum and nuclear envelope, from a diffuse pattern with a few small aggregates in resting cells to large isolated clusters after antigen stimulation. Redistribution of type II InsP3 receptors is also seen after treatment of RBL-2H3 cells with ionomycin or thapsigargin. InsP3 receptor clustering occurs within 5–10 min of stimulus and persists for up to 1 h in the presence of antigen. Receptor clustering is independent of endoplasmic reticulum vesiculation, which occurs only at ionomycin concentrations >1 μM, and maximal clustering responses are dependent on the presence of extracellular calcium. InsP3 receptor aggregation may be a characteristic cellular response to Ca2+-mobilizing ligands, because similar results are seen after activation of phospholipase C-linked G-protein-coupled receptors; cholecystokinin causes type II receptor redistribution in rat pancreatoma AR4–2J cells, and carbachol causes type III receptor redistribution in muscarinic receptor-expressing hamster lung fibroblast E36M3R cells. Stimulation of these three cell types leads to a reduction in InsP3 receptor levels only in AR4–2J cells, indicating that receptor clustering does not correlate with receptor down-regulation. The calcium-dependent aggregation of InsP3 receptors may contribute to the previously observed changes in affinity for InsP3 in the presence of elevated Ca2+ and/or may establish discrete regions within refilled stores with varying capacity to release Ca2+ when a subsequent stimulus results in production of InsP3.
Resumo:
Using a consensus sequence in inositol phosphate kinase, we have identified and cloned a 44-kDa mammalian inositol phosphate kinase with broader catalytic capacities than any other member of the family and which we designate mammalian inositol phosphate multikinase (mIPMK). By phosphorylating inositol 4,5-bisphosphate, mIPMK provides an alternative biosynthesis for inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. mIPMK also can form the pyrophosphate disphosphoinositol tetrakisphosphate (PP-InsP4) from InsP5. Additionally, mIPMK forms InsP4 from Ins(1,4,5)P3 and InsP5 from Ins(1,3,4,5)P4.
Resumo:
To investigate the dynamics of guanosine 3′,5′-cyclic monophosphate (cGMP) in single living cells, we constructed genetically encoded, fluorescent cGMP indicators by bracketing cGMP-dependent protein kinase (cGPK), minus residues 1–77, between cyan and yellow mutants of green fluorescent protein. cGMP decreased fluorescence resonance energy transfer (FRET) and increased the ratio of cyan to yellow emissions by up to 1.5-fold with apparent dissociation constants of ≈2 μM and >100:1 selectivity for cGMP over cAMP. To eliminate constitutive kinase activity, Thr516 of cGPK was mutated to Ala. Emission ratio imaging of the indicators transfected into rat fetal lung fibroblast (RFL)-6 showed cGMP transients resulting from activation of soluble and particulate guanylyl cyclase, respectively, by nitric oxide (NO) and C-type natriuretic peptide (CNP). Whereas all naive cells tested responded to CNP, only 68% responded to NO. Both sets of signals showed large and variable (0.5–4 min) latencies. The phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) did not elevate cGMP on its own but consistently amplified responses to NO or CNP, suggesting that basal activity of guanylate cyclase is very low and emphasizing the importance of PDEs in cGMP recycling. A fraction of RFL cells showed slowly propagating tides of cGMP spreading across the cell in response to delocalized application of NO. Biolistically transfected Purkinje neurons showed cGMP responses to parallel fiber activity and NO donors, confirming that single-cell increases in cGMP occur under conditions appropriate to cause synaptic plasticity.
Resumo:
Pathogenesis-related proteins from intercellular fluid washings of stressed barley (Hordeum vulgare L.) leaves were analyzed to determine their binding to various water-insoluble polysaccharides. Three proteins (19, 16, and 15 kD) bound specifically to several water-insoluble β-1,3-glucans. Binding of the barley proteins to pachyman occurred quickly at 22°C at pH 5.0, even in the presence of 0.5 m NaCl, 0.2 m urea, and 1% (v/v) Triton X-100. Bound barley proteins were released by acidic treatments or by boiling in sodium dodecyl sulfate. Acid-released barley proteins could bind again specifically and singly to pachyman. Water-soluble laminarin and carboxymethyl-pachyman competed for the binding of the barley proteins to pachyman. The N-terminal sequence of the 19-kD barley β-1,3-glucan-binding protein showed near identity to the barley seed protein BP-R and high homology to other thaumatin-like (TL) permatins. The 16-kD barley protein was also homologous to TL proteins, whereas the 15-kD barley protein N-terminal sequence was identical to the pathogenesis-related Hv-1 TL protein. Antifungal barley protein BP-R and corn (Zea mays) zeamatin were isolated by binding to pachyman. Two extracellular proteins from stressed pea (Pisum sativum L.) also bound to pachyman and were homologous to TL proteins.
Resumo:
We isolated two tomato (Lycopersicon esculentum) cDNA clones, tomPRO1 and tomPRO2, specifying Δ1-pyrroline-5-carboxylate synthetase (P5CS), the first enzyme of proline (Pro) biosynthesis. tomPRO1 is unusual because it resembles prokaryotic polycistronic operons (M.G. García-Ríos, T. Fujita, P.C. LaRosa, R.D. Locy, J.M. Clithero, R.A. Bressan, L.N. Csonka [1997] Proc Natl Acad Sci USA 94: 8249–8254), whereas tomPRO2 encodes a full-length P5CS. We analyzed the accumulation of Pro and the tomPRO1 and tomPRO2 messages in response to NaCl stress and developmental signals. Treatment with 200 mm NaCl resulted in a >60-fold increase in Pro levels in roots and leaves. However, there was a <3-fold increase in the accumulation of the tomPRO2 message and no detectable induction in the level of the tomPRO1 message in response to NaCl stress. Although pollen contained approximately 100-fold higher levels of Pro than other plant tissues, there was no detectable increase in the level of either message in pollen. We conclude that transcriptional regulation of these genes for P5CS is probably not important for the osmotic or pollen-specific regulation of Pro synthesis in tomato. Using restriction fragment-length polymorphism mapping, we determined the locations of tomPRO1 and tomPRO2 loci in the tomato nuclear genome. Sequence comparison suggested that tomPRO1 is similar to prokaryotic P5CS loci, whereas tomPRO2 is closely related to other eukaryotic P5CS genes.
Resumo:
Five extremely thermophilic Archaea from hydrothermal vents were isolated, and their DNA polymerases were cloned and expressed in Escherichia coli. Protein splicing elements (inteins) are present in many archaeal DNA polymerases, but only the DNA polymerase from strain GB-C contained an intein. Of the five cloned DNA polymerases, the Thermococcus sp. 9 degrees N-7 DNA polymerase was chosen for biochemical characterization. Thermococcus sp. 9 degrees N-7 DNA polymerase exhibited temperature-sensitive strand displacement activity and apparent Km values for DNA and dNTP similar to those of Thermococcus litoralis DNA polymerase. Six substitutions in the 3'-5' exonuclease motif I were constructed in an attempt to reduce the 3'-5' exonuclease activity of Thermococcus sp. 9 degrees N-7 DNA polymerase. Five mutants resulted in no detectable 3'-5' exonuclease activity, while one mutant (Glul43Asp) had <1% of wild-type activity.