6 resultados para rotated to zero

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies of circulating T (CD3+) lymphocytes have shown that on a population basis T-cell numbers remain stable for many years after HIV-1 infection (blind T-cell homeostasis), but decline rapidly beginning approximately 1.5â2.5 years before the onset of clinical AIDS. We derived a general method for defining the loss of homeostasis on the individual level and for determining the prevalence of homeostasis loss according to HIV status and the occurrence of AIDS in more than 5,000 men enrolled in the Multicenter AIDS Cohort Study. We used a segmented regression model for log10 CD3+ cell counts that included separate T-cell trajectories before and after a time (the T-cell inflection point) where the loss of T-cell homeostasis was most likely to have occurred. The average slope of CD3+ lymphocyte counts before the inflection point was close to zero for HIV∠and HIV+ men, consistent with blind T-cell homeostasis. After the inflection point, the HIV+ individuals who developed AIDS generally showed a dramatic decline in CD3+ cell counts relative to HIV∠men and HIV+ men not developing AIDS. A CD3+ cell decline of greater than 10 percent per year was present in 77% of HIV+ men developing AIDS but in only 23% of HIV+ men with no onset of AIDS. Our findings at the individual level support the blind T-cell homeostasis hypothesis and provide strong evidence that the loss of homeostasis is an important mechanism in the pathogenesis of the severe immunodeficiency that characterizes the late stages of HIV infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Embolism and refilling of vessels was monitored directly by cryomicroscopy of field-grown corn (Zea mays L.) roots. To test the reliability of an earlier study showing embolism refilling in roots at negative leaf water potentials, embolisms were counted, and root water potentials (Ψroot) and osmotic potentials of exuded xylem sap from the same roots were measured by isopiestic psychrometry. All vessels were full at dawn (Ψroot âˆ0.1 MPa). Embolisms were first seen in late metaxylem vessels at 8 am. Embolized late metaxylem vessels peaked at 50% at 10 am (Ψroot âˆ0.1 MPa), fell to 44% by 12 pm (Ψroot âˆ0.23 MPa), then dropped steadily to zero by early evening (Ψroot âˆ0.28 MPa). Transpiration was highest (8.5 μg cmâˆ2 sâˆ1) between 12 and 2 pm when the percentage of vessels embolized was falling. Embolized vessels were refilled by liquid moving through their lateral walls. Xylem sap was very low in solutes. The mechanism of vessel refilling, when Ψroot is negative, requires further investigation. Daily embolism and refilling in roots of well-watered plants is a normal occurrence and may be a component of an important hydraulic signaling mechanism between roots and shoots.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The myosin head consists of a globular catalytic domain that binds actin and hydrolyzes ATP and a neck domain that consists of essential and regulatory light chains bound to a long alpha-helical portion of the heavy chain. The swinging neck-level model assumes that a swinging motion of the neck relative to the catalytic domain is the origin of movement. This model predicts that the step size, and consequently the sliding velocity, are linearly related to the length of the neck. We have tested this point by characterizing a series of mutant Dictyostelium myosins that have different neck lengths. The 2xELCBS mutant has an extra binding site for essential light chain. The delta RLCBS mutant myosin has an internal deletion that removes the regulatory light chain binding site. The delta BLCBS mutant lacks both light chain binding sites. Wild-type myosin and these mutant myosins were subjected to the sliding filament in vitro motility assay. As expected, mutants with shorter necks move slower than wild-type myosin in vitro. Most significantly, a mutant with a longer neck moves faster than the wild type, and the sliding velocities of these myosins are linearly related to the neck length, as predicted by the swinging neck-lever model. A simple extrapolation to zero speed predicts that the fulcrum point is in the vicinity of the SH1-SH2 region in the catalytic domain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Is the mechanical unraveling of protein domains by atomic force microscopy (AFM) just a technological feat or a true measurement of their unfolding? By engineering a protein made of tandem repeats of identical Ig modules, we were able to get explicit AFM data on the unfolding rate of a single protein domain that can be accurately extrapolated to zero force. We compare this with chemical unfolding rates for untethered modules extrapolated to 0 M denaturant. The unfolding rates obtained by the two methods are the same. Furthermore, the transition state for unfolding appears at the same position on the folding pathway when assessed by either method. These results indicate that mechanical unfolding of a single protein by AFM does indeed reflect the same event that is observed in traditional unfolding experiments. The way is now open for the extensive use of AFM to measure folding reactions at the single-molecule level. Single-molecule AFM recordings have the added advantage that they define the reaction coordinate and expose rare unfolding events that cannot be observed in the absence of chemical denaturants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the pH dependence of the dynamics of conformational fluctuations of green fluorescent protein mutants EGFP (F64L/S65T) and GFP-S65T in small ensembles of molecules in solution by using fluorescence correlation spectroscopy (FCS). FCS utilizes time-resolved measurements of fluctuations in the molecular fluorescence emission for determination of the intrinsic dynamics and thermodynamics of all processes that affect the fluorescence. Fluorescence excitation of a bulk solution of EGFP decreases to zero at low pH (pKa = 5.8) paralleled by a decrease of the absorption at 488 nm and an increase at 400 nm. Protonation of the hydroxyl group of Tyr-66, which is part of the chromophore, induces these changes. When FCS is used the fluctuations in the protonation state of the chromophore are time resolved. The autocorrelation function of fluorescence emission shows contributions from two chemical relaxation processes as well as diffusional concentration fluctuations. The time constant of the fast, pH-dependent chemical process decreases with pH from 300 μs at pH 7 to 45 μs at pH 5, while the time-average fraction of molecules in a nonfluorescent state increases to 80% in the same range. A second, pH-independent, process with a time constant of 340 μs and an associated fraction of 13% nonfluorescent molecules is observed between pH 8 and 11, possibly representing an internal proton transfer process and associated conformational rearrangements. The FCS data provide direct measures of the dynamics and the equilibrium properties of the protonation processes. Thus FCS is a convenient, intrinsically calibrated method for pH measurements in subfemtoliter volumes with nanomolar concentrations of EGFP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we report direct measurement of an influx of extracellular Ca2+ induced by gamete fusion in flowering plants. This result was obtained during maize in vitro fertilization with the use of an extracellular Ca2+-selective vibrating probe. Ca2+ influx recorded at the surface of isolated egg cells, with or without adhesion of a male sperm cell, was close to zero and stable over time. Gamete fusion, however, triggered a Ca2+ influx in the vicinity of the sperm entry site with a delay of 1.8 ± 0.6 sec. The Ca2+ influx spread subsequently through the whole egg cell plasma membrane as a wavefront, progressing at an estimated rate of 1.13 μmâsecâˆ1. Once established, Ca2+ influx intensities were sustained, monotonic and homogeneous over the whole egg cell, with an average peak influx of 14.92 pmolâcmâˆ2âsecâˆ1 and an average duration of 24.4 min. The wavefront spread of channel activation correlates well with the cytological modifications induced by fertilization, such as egg cell contraction, and with the cytosolic Ca2+ (c[Ca2+]) elevation previously reported. Calcium influx was inhibited effectively by gadolinium, possibly implicating mechanosensitive channels. Furthermore, artificial influxes created by incubation with Ca2+ ionophores mimicked some aspects of egg activation. Taken together, these results suggest that, during fertilization in higher plants, gamete membrane fusion starts the first embryonic events by channel opening and Ca2+ influx. In turn, c[Ca2+] may work as a trigger and possibly a space and time coordinator of many aspects of egg activation.