19 resultados para ‘Steroid-sparing’

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 3A4 is generally considered to be the most important human drug-metabolizing enzyme and is known to catalyze the oxidation of a number of substrates in a cooperative manner. An allosteric mechanism is usually invoked to explain the cooperativity. Based on a structure–activity study from another laboratory using various effector–substrate combinations and on our own studies using site-directed mutagenesis and computer modeling of P450 3A4, the most likely location of effector binding is in the active site along with the substrate. Our study was designed to test this hypothesis by replacing residues Leu-211 and Asp-214 with the larger Phe and Glu, respectively. These residues were predicted to constitute a portion of the effector binding site, and the substitutions were designed to mimic the action of the effector by reducing the size of the active site. The L211F/D214E double mutant displayed an increased rate of testosterone and progesterone 6β-hydroxylation at low substrate concentrations and a decreased level of heterotropic stimulation elicited by α-naphthoflavone. Kinetic analyses of the double mutant revealed the absence of homotropic cooperativity with either steroid substrate. At low substrate concentrations the steroid 6β-hydroxylase activity of the wild-type enzyme was stimulated by a second steroid, whereas L211F/D214E displayed simple substrate inhibition. To analyze L211F/D214E at a more mechanistic level, spectral binding studies were carried out. Testosterone binding by the wild-type enzyme displayed homotropic cooperativity, whereas substrate binding by L211F/D214E displayed hyperbolic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steroids, thyroid hormones, vitamin D3, and retinoids are lipophilic small molecules that regulate diverse biological effects such as cell differentiation, development, and homeostasis. The actions of these hormones are mediated by steroid/nuclear receptors which function as ligand-dependent transcriptional regulators. Transcriptional activation by ligand-bound receptors is a complex process requiring dissociation and recruitment of several additional cofactors. We report here the cloning and characterization of receptor-associated coactivator 3 (RAC3), a human transcriptional coactivator for steroid/nuclear receptors. RAC3 interacts with several liganded receptors through a mechanism which requires their respective ligand-dependent activation domains. RAC3 can activate transcription when tethered to a heterologous DNA-binding domain. Overexpression of RAC3 enhances the ligand-dependent transcriptional activation by the receptors in mammalian cells. Sequence analysis reveals that RAC3 is related to steroid receptor coactivator 1 (SRC-1) and transcriptional intermediate factor 2 (TIF2), two of the most potent coactivators for steroid/nuclear receptors. Thus, RAC3 is a member of a growing coactivator network that should be useful as a tool for understanding hormone action and as a target for developing new therapeutic agents that can block hormone-dependent neoplasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our research team and laboratories have concentrated on two inherited endocrine disorders, congenital adrenal hyperplasia (CAH) and apparent mineralocorticoid excess, in thier investigations of the pathophysiology of adrenal steroid hormone disorders in children. CAH refers to a family of inherited disorders in which defects occur in one of the enzymatic steps required to synthesize cortisol from cholesterol in the adrenal gland. Because of the impaired cortisol secretion, adrenocorticotropic hormone levels rise due to impairment of a negative feedback system, which results in hyperplasia of the adrenal cortex. The majority of cases is due to 21-hydroxylase deficiency (21-OHD). Owing to the blocked enzymatic step, cortisol precursors accumulate in excess and are converted to potent androgens, which are secreted and cause in utero virilization of the affected female fetus genitalia in the classical form of CAH. A mild form of the 21-OHD, termed nonclassical 21-OHD, is the most common autosomal recessive disorder in humans, and occurs in 1/27 Ashkenazic Jews. Mutations in the CYP21 gene have been identified that cause both classical and nonclassical CAH. Apparent mineralocorticoid excess is a potentially fatal genetic disorder causing severe juvenile hypertension, pre- and postnatal growth failure, and low to undetectable levels of potassium, renin, and aldosterone. It is caused by autosomal recessive mutations in the HSD11B2 gene, which result in a deficiency of 11β-hydroxysteroid dehydrogenase type 2. In 1998, we reported a mild form of this disease, which may represent an important cause of low-renin hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Norepinephrine contributes to antinociceptive, sedative, and sympatholytic responses in vivo, and α2 adrenergic receptor (α2AR) agonists are used clinically to mimic these effects. Lack of subtype-specific agonists has prevented elucidation of the role that each α2AR subtype (α2A, α2B, and α2C) plays in these central effects. Here we demonstrate that α2AR agonist-elicited sedative, anesthetic-sparing, and analgesic responses are lost in a mouse line expressing a subtly mutated α2AAR, D79N α2AAR, created by two-step homologous recombination. These functional changes are accompanied by failure of the D79N α2AAR to inhibit voltage-gated Ca2+ currents and spontaneous neuronal firing, a measure of K+ current activation. These results provide definitive evidence that the α2AAR subtype is the primary mediator of clinically important central actions of α2AR agonists and suggest that the D79N α2AAR mouse may serve as a model for exploring other possible α2AAR functions in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive immunization has emerged as a new tool for the study of biological catalysis. A powerful application resulted in catalytic antibodies that use an enamine mechanism akin to that used by the class I aldolases. With regard to the evolution of enzyme mechanisms, we investigated the utility of an enamine pathway for the allylic rearrangement exemplified by Δ5-3-ketosteroid isomerase (KSI; EC 5.3.3.1). Our aldolase antibodies were found to catalyze the isomerization of both steroid model compounds and steroids. The kinetic and chemical studies showed that the antibodies afforded rate accelerations up to a factor of 104 by means of an enamine mechanism in which imine formation was the rate-determining step. In light of our observations and the enzyme studies by other workers, we suggest that an enamine pathway could have been an early, viable KSI mechanism. Although this pathway is amenable to optimization for increased catalytic power, it appears that certain factors precluded its evolution in known KSI enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The androgen receptor (AR) binds to androgen response elements and regulates target genes via a mechanism involving coregulators. Here we demonstrate that the AR can interact with the testicular orphan receptor-4 (TR4) and function as a repressor to down-regulate the TR4 target genes by preventing the TR4 binding to its target DNA. Interestingly, the heterodimerization of AR and TR4 also allows TR4 to repress AR target gene expression. Simultaneous exposure to both receptors therefore could result in bidirectional suppression of their target genes. Together, these data demonstrate that the coupling of two different receptors, through the heterodimerization of AR and TR4, is a unique signaling pathway in the steroid receptor superfamily, which may facilitate further understanding of the complicated androgen action in prostate cancer or libido.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CDC37 gene is essential for the activity of p60v-src when expressed in yeast cells. Since the activation pathway for p60v-src and steroid hormone receptors is similar, the present study analyzed the hormone-dependent transactivation by androgen receptors and glucocorticoid receptors in yeast cells expressing a mutant version of the CDC37 gene. In this mutant, hormone-dependent transactivation by androgen receptors was defective at both permissive and restrictive temperatures, although transactivation by glucocorticoid receptors was mildly defective only at the restrictive temperature. Cdc37p appears to function via the androgen receptor ligand-binding domain, although it does not influence receptor hormone-binding affinity. Models for Cdc37p regulation of steroid hormone receptors are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of novelty in tightly integrated biological systems, such as hormones and their receptors, seems to challenge the theory of natural selection: it has not been clear how a new function for any one part (such as a ligand) can be selected for unless the other members of the system (e.g., a receptor) are already present. Here I show—based on identification and phylogenetic analysis of steroid receptors in basal vertebrates and reconstruction of the sequences and functional attributes of ancestral proteins—that the first steroid receptor was an estrogen receptor, followed by a progesterone receptor. Genome mapping and phylogenetic analyses indicate that the full complement of mammalian steroid receptors evolved from these ancient receptors by two large-scale genome expansions, one before the advent of jawed vertebrates and one after. Specific regulation of physiological processes by androgens and corticoids are relatively recent innovations that emerged after these duplications. These findings support a model of ligand exploitation in which the terminal ligand in a biosynthetic pathway is the first for which a receptor evolves; selection for this hormone also selects for the synthesis of intermediates despite the absence of receptors, and duplicated receptors then evolve affinity for these substances. In this way, novel hormone-receptor pairs are created, and an integrated system of increasing complexity elaborated. This model suggests that ligands for some “orphan” receptors may be found among intermediates in the synthesis of ligands for phylogenetically related receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas adult sex differences in brain morphology and behavior result from developmental exposure to steroid hormones, the mechanism by which steroids differentiate the brain is unknown. Studies to date have described subtle sex differences in levels of proteins and neurotransmitters during brain development, but these have lacked explanatory power for the profound sex differences induced by steroids. We report here a major divergence in the response to injection of the γ-aminobutyric acid type A (GABAA) agonist, muscimol, in newborn male and female rats. In females, muscimol treatment primarily decreased the phosphorylation of cAMP response element binding protein (CREB) within the hypothalamus and the CA1 region of the hippocampus. In contrast, muscimol increased the phosphorylation of CREB in males within these same brain regions. Within the arcuate nucleus, muscimol treatment increased the phosphorylation of CREB in both females and males. Thus, the response to GABA can be excitatory or inhibitory on signal-transduction pathways that alter CREB phosphorylation depending on the sex and the region in developing brain. This divergence in response to GABA allows for a previously unknown form of steroid-mediated neuronal plasticity and may be an initial step in establishing sexually dimorphic signal-transduction pathways in developing brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past studies have shown that epidermal growth factor (EGF) is able to mimic the uterotropic effects of estrogen in the rodent. These studies have suggested a "cross-talk" model in which EGF receptor (EGF-R) signaling results in activation of nuclear estrogen receptor (ER) and its target genes in an estrogen-independent manner. Furthermore, in vitro studies have indicated the requirement for ER in this mechanism. To verify the requirement for ER in an in vivo system, EGF effects were studied in the uteri of ER knockout (ERKO) mice, which lack functional ER. The EGF-R levels, autophosphorylation, and c-fos induction were observed at equivalent levels in both genotypes indicating that removal of ER did not disrupt the EGF responses. Induction of DNA synthesis and the progesterone receptor gene in the uterus were measured after EGF treatment of both ERKO and wild-type animals. Wild-type mice showed increases of 4.3-fold in DNA synthesis, as well as an increase in PR mRNA after EGF treatment. However, these responses were absent in ERKO mice, confirming that the estrogen-like effects of EGF in the mouse uterus do indeed require the ER. These data conclusively demonstrate the coupling of EGF and ER signaling pathways in the rodent reproductive tract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steroid receptors are ligand-regulated transcription factors that require coactivators for efficient activation of target gene expression. The binding protein of cAMP response element binding protein (CBP) appears to be a promiscuous coactivator for an increasing number of transcription factors and the ability of CBP to modulate estrogen receptor (ER)- and progesterone receptor (PR)-dependent transcription was therefore examined. Ectopic expression of CBP or the related coactivator, p300, enhanced ER transcriptional activity by up to 10-fold in a receptor- and DNA-dependent manner. Consistent with this, the 12S E1A adenoviral protein, which binds to and inactivates CBP, inhibited ER transcriptional activity, and exogenous CBP was able to partially overcome this effect. Furthermore, CBP was able to partially reverse the ability of active ER to squelch PR-dependent transcription, indicating that CBP is a common coactivator for both receptors and that CBP is limiting within these cells. To date, the only other coactivator able to significantly stimulate receptor-dependent transcription is steroid receptor coactivator-1 (SRC-1). Coexpression of CBP and SRC-1 stimulated ER and PR transcriptional activity in a synergistic manner and indicated that these two coactivators are not functional homologues. Taken together, these data suggest that both CBP and SRC-1 may function in a common pathway to efficiently activate target gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The yeast two-hybrid system was used to isolate a clone from a 17-day-old mouse embryo cDNA library that codes for a novel 812-aa long protein fragment, glucocorticoid receptor-interacting protein 1 (GRIP1), that can interact with the hormone binding domain (HBD) of the glucocorticoid receptor. In the yeast two-hybrid system and in vitro, GRIP1 interacted with the HBDs of the glucocorticoid, estrogen, and androgen receptors in a hormone-regulated manner. When fused to the DNA binding domain of a heterologous protein, the GRIP1 fragment activated a reporter gene containing a suitable enhancer site in yeast cells and in mammalian cells, indicating that GRIP1 contains a transcriptional activation domain. Overexpression of the GRIP1 fragment in mammalian cells interfered with hormone-regulated expression of mouse mammary tumor virus-chloramphenicol acetyltransferase gene and constitutive expression of cytomegalovirus-beta-galactosidase reporter gene, but not constitutive expression from a tRNA gene promoter. This selective squelching activity suggests that GRIM can interact with an essential component of the RNA polymerase II transcription machinery. Finally, while a steroid receptor HBD fused with a GAL4 DNA binding domain did not, by itself, activate transcription of a reporter gene in yeast, coexpression of this fusion protein with GRIP1 strongly activated the reporter gene. Thus, in yeast, GRIP1 can serve as a coactivator, potentiating the transactivation functions in steroid receptor HBDs, possibly by acting as a bridge between HBDs of the receptors and the basal transcription machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estrogen receptor (ER), a 66-kDa protein that mediates the actions of estrogens in estrogen-responsive tissues, is a member of a large superfamily of nuclear hormone receptors that function as ligand-activated transcription factors. ER shares a conserved structural and functional organization with other members of this superfamily, including two transcriptional activation functions (AFs), one located in its amino-terminal region (AF-1) and the second located in its carboxyl-terminal, ligand-binding region (AF-2). In most promoter contexts, synergism between AF-1 and AF-2 is required for full ER activity. In these studies, we demonstrate a functional interaction of the two AF-containing regions of ER, when expressed as separate polypeptides in mammalian cells, in response to 17 beta-estradiol (E2) and antiestrogen binding. The interaction was transcriptionally productive only in response to E2, and was eliminated by point or deletion mutations that destroy AF-1 or AF-2 activity or E2 binding. Our results suggest a definitive mechanistic role for E2 in the activity of ER--namely, to alter receptor conformation to promote an association of the amino- and carboxyl-terminal regions, leading to transcriptional synergism between AF-1 and AF-2. The productive re assembly of two portions of ER expressed in cells as separate polypeptides demonstrates the evolutionarily conserved modular structural and functional organization of the nuclear hormone receptors. The ligand-dependent interaction of the two AF-containing regions of ER allows for the assembly of a complete activation function from two distinct regions within the same protein, providing a mechanism for hormonally regulated transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineralocorticoid and glucocorticoid receptors (MR and GR, respectively) are members of the intracellular receptor superfamily that bind as homodimers to the same hormone response elements (HREs). Physiological evidence suggests that MR and GR interact with each other in cells that express both receptors, implying that they might directly interact in the regulation of transcription initiation. Indeed, we have found that coexpressed MR and GR interact functionally at the transcriptional level and furthermore that they interact physically through heterodimer formation at a shared HRE in vitro and in vivo. We suggest from these findings that heterodimerization may play an important role in steroid receptor transcriptional regulation.