2 resultados para "Receptor arylhydrocarbon (AHR)"
em National Center for Biotechnology Information - NCBI
Resumo:
The ubiquitously expressed basic helix–loop–helix (bHLH)-PAS protein ARNT (arylhydrocarbon receptor nuclear transporter) forms transcriptionally active heterodimers with a variety of other bHLH-PAS proteins, including HIF-1α (hypoxia-inducible factor-1α) and AHR (arylhydrocarbon receptor). These complexes regulate gene expression in response to hypoxia and xenobiotics, respectively, and mutation of the murine Arnt locus results in embryonic death by day 10.5 associated with placental, vascular, and hematopoietic defects. The closely related protein ARNT2 is highly expressed in the central nervous system and kidney and also forms complexes with HIF-1α and AHR. To assess unique roles for ARNT2 in development, and reveal potential functional overlap with ARNT, we generated a targeted null mutation of the murine Arnt2 locus. Arnt2−/− embryos die perinatally and exhibit impaired hypothalamic development, phenotypes previously observed for a targeted mutation in the murine bHLH-PAS gene Sim1 (Single-minded 1), and consistent with the recent proposal that ARNT2 and SIM1 form an essential heterodimer in vivo [Michaud, J. L., DeRossi, C., May, N. R., Holdener, B. C. & Fan, C. (2000) Mech. Dev. 90, 253–261]. In addition, cultured Arnt2−/− neurons display decreased hypoxic induction of HIF-1 target genes, demonstrating formally that ARNT2/HIF-1α complexes regulate oxygen-responsive genes. Finally, a strong genetic interaction between Arnt and Arnt2 mutations was observed, indicating that either gene can fulfill essential functions in a dose-dependent manner before embryonic day 8.5. These results demonstrate that Arnt and Arnt2 have both unique and overlapping essential functions in embryonic development.
Resumo:
The Ah receptor (AHR) is a ligand-activated transcription factor that mediates a pleiotropic response to environmental contaminants such as benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. In an effort to gain insight into the physiological role of the AHR and to develop models useful in risk assessment, gene targeting was used to inactivate the murine Ahr gene by homologous recombination. Ahr-/- mice are viable and fertile but show a spectrum of hepatic defects that indicate a role for the AHR in normal liver growth and development. The Ahr-/- phenotype is most severe between 0-3 weeks of age and involves slowed early growth and hepatic defects, including reduced liver weight, transient microvesicular fatty metamorphosis, prolonged extramedullary hematopoiesis, and portal hypercellularity with thickening and fibrosis.