200 resultados para smooth endoplasmic reticulum
Resumo:
Several membrane-associating signals, including covalently linked fatty acids, are found in various combinations at the N termini of signaling proteins. The function of these combinations was investigated by appending fatty acylated N-terminal sequences to green fluorescent protein (GFP). Myristoylated plus mono/dipalmitoylated GFP chimeras and a GFP chimera containing a myristoylated plus a polybasic domain were localized similarly to the plasma membrane and endosomal vesicles, but not to the nucleus. Myristoylated, nonpalmitoylated mutant chimeric GFPs were localized to intracellular membranes, including endosomes and the endoplasmic reticulum, and were absent from the plasma membrane, the Golgi, and the nucleus. Dually palmitoylated GFP was localized to the plasma membrane and the Golgi region, but it was not detected in endosomes. Nonacylated GFP chimeras, as well as GFP, showed cytosolic and nuclear distribution. Our results demonstrate that myristoylation is sufficient to exclude GFP from the nucleus and associate with intracellular membranes, but plasma membrane localization requires a second signal, namely palmitoylation or a polybasic domain. The similarity in localization conferred by the various myristoylated and palmitoylated/polybasic sequences suggests that biophysical properties of acylated sequences and biological membranes are key determinants in proper membrane selection. However, dual palmitoylation in the absence of myristoylation conferred significant differences in localization, suggesting that multiple palmitoylation sites and/or enzymes may exist.
Resumo:
The Drosophila fusome is a germ cell-specific organelle assembled from membrane skeletal proteins and membranous vesicles. Mutational studies that have examined inactivating alleles of fusome proteins indicate that the organelle plays central roles in germ cell differentiation. Although mutations in genes encoding skeletal fusome components prevent proper cyst formation, mutations in the bag-of-marbles gene disrupt the assembly of membranous cisternae within the fusome and block cystoblast differentiation altogether. To understand the relationship between fusome cisternae and cystoblast differentiation, we have begun to identify other proteins in this network of fusome tubules. In this article we present evidence that the fly homologue of the transitional endoplasmic reticulum ATPase (TER94) is one such protein. The presence of TER94 suggests that the fusome cisternae grow by vesicle fusion and are a germ cell modification of endoplasmic reticulum. We also show that fusome association of TER94 is Bam-dependent, suggesting that cystoblast differentiation may be linked to fusome reticulum biogenesis.
Resumo:
Δ9-Desaturase is a key enzyme in the synthesis of desaturated fatty acyl-CoAs. Desaturase is an integral membrane protein induced in the endoplasmic reticulum by dietary manipulations and then rapidly degraded. The proteolytic machinery that specifically degrades desaturase and other short-lived proteins in the endoplasmic reticulum has not been identified. As the first step in identifying cellular factors involved in the degradation of desaturase, liver subcellular fractions of rats that had undergone induction of this enzyme were examined. In livers from induced animals, desaturase was present in the microsomal, nuclear (P-1), and subcellular fractions (P-2). Incubation of desaturase containing fractions at physiological pH and temperature led to the complete disappearance of the enzyme. Washing microsomes with a buffer containing high salt decreased desaturase degradation activity. N-terminal sequence analysis of desaturase freshly isolated from the P-1 fraction without incubation indicated the absence of three residues from the N terminus, but the mobility of this desaturase preparation on SDS-PAGE was identical to the microsomal desaturase, which contains a masked N terminus under similar purification procedures. Addition of concentrated cytosol or the high-salt wash fraction did not enhance the desaturase degradation in the washed microsomes. Extensive degradation of desaturase in the high-salt washed microsomes could be restored by supplementation of the membranes with the lipid and protein components essential for the reconstituted desaturase catalytic activity. Lysosomotrophic agents leupeptin and pepstatin A were ineffective in inhibiting desaturase degradation. The calpain inhibitor, N-acetyl-leucyl-leucyl-methional, or the proteosome inhibitor, Streptomyces metabolite, lactacystin, did not inhibit the degradation of desaturase in the microsomal or the P-1 and P-2 fractions. These results show that the selective degradation of desaturase is likely to be independent of the lysosomal and the proteosome systems. The reconstitution of complete degradation of desaturase in the high-salt–washed microsomes by the components essential for its catalytic activity reflects that the degradation of this enzyme may depend on a specific orientation of desaturase and intramembranous interactions between desaturase and the responsible protease.
Resumo:
Evidence has been presented both for and against obligate retrograde movement of resident Golgi proteins through the endoplasmic reticulum (ER) during nocodazole-induced Golgi ministack formation. Here, we studied the nocodazole-induced formation of ministacks using phospholipase A2 (PLA2) antagonists, which have been shown previously to inhibit brefeldin A–stimulated Golgi-to-ER retrograde transport. Examination of clone 9 rat hepatocytes by immunofluorescence and immunoelectron microscopy revealed that a subset of PLA2 antagonists prevented nocodazole-induced ministack formation by inhibiting two different trafficking pathways for resident Golgi enzymes; at 25 μM, retrograde Golgi-to-ER transport was inhibited, whereas at 5 μM, Golgi-to-ER trafficking was permitted, but resident Golgi enzymes accumulated in the ER. Moreover, resident Golgi enzymes gradually redistributed from the juxtanuclear Golgi or Golgi ministacks to the ER in cells treated with these PLA2 antagonists alone. Not only was ER-to-Golgi transport of resident Golgi enzymes inhibited in cells treated with these PLA2 antagonists, but transport of the vesicular stomatitis virus G protein out of the ER was also prevented. These results support a model of obligate retrograde recycling of Golgi resident enzymes during nocodazole-induced ministack formation and provide additional evidence that resident Golgi enzymes slowly and constitutively cycle between the Golgi and ER.
Resumo:
Class I and class II molecules of the major histocompatibility complex present peptides to T cells. Class I molecules bind peptides that have been generated in the cytosol by proteasomes and delivered into the endoplasmic reticulum by the transporter associated with antigen presentation. In contrast, class II molecules are very efficient in the presentation of antigens that have been internalized and processed in endosomal/lysosomal compartments. In addition, class II molecules can present some cytosolic antigens by a TAP-independent pathway. To test whether this endogenous class II presentation pathway was linked to proteasome-mediated degradation of antigen in the cytosol, the N-end rule was utilized to produce two forms of the influenza virus matrix protein with different in vivo half-lives (10 min vs. 5 h) when expressed in human B cells. Whereas class I molecules presented both the short- and the long-lived matrix proteins, class II molecules presented exclusively the long-lived form of antigen. Thus, rapid degradation of matrix protein in the cytosol precluded its presentation by class II molecules. These data suggest that the turnover of long-lived cytosolic proteins, some of which is mediated by delivery into endosomal/lysosomal compartments, provides a mechanism for immune surveillance by CD4+ T cells.
Resumo:
In the yeast, Saccharomyces cerevisiae, oligosaccharyl transferase (OT), which catalyzes the transfer of dolichol-linked oligosaccharide chains to nascent polypeptides in the endoplasmic reticulum, consists of nine nonidentical membrane protein subunits. Genetic and biochemical evidence indicated these nine proteins exist in three subcomplexes. Three of the OT subunits (Ost4p, Ost3p, and Stt3p) have been proposed to exist in one subcomplex. To investigate the interaction of these three membrane proteins, initially we carried out a mutational analysis of Ost4p, which is an extraordinarily small membrane protein containing only 36 amino acid residues. This analysis indicated that when single amino acid residues in a region close to the luminal face of the putative transmembrane domain of Ost4p were changed into an ionizable amino acid such as Lys or Asp, growth at 37°C and OT activity measured in vitro were impaired. In addition, using immunoprecipitation techniques and Western blot analysis, we found that with these mutations the interaction between Ost4p, Ost3p, and Stt3p was disrupted. Introduction of Lys or Asp residues at other positions in the putative transmembrane domain or at the N or C terminus of Ost4p had no effect on disrupting subunit interactions or impairing the activity of OT. These findings suggest that a localized region of the putative transmembrane domain of Ost4p mediates in stabilization of the interaction with the two other OT subunits (Ost3p and Stt3p) in a subcomplex in the endoplasmic reticulum membrane.
Resumo:
In α1-AT deficiency, a misfolded but functionally active mutant α1-ATZ (α1-ATZ) molecule is retained in the endoplasmic reticulum of liver cells rather than secreted into the blood and body fluids. Emphysema is thought to be caused by the lack of circulating α1-AT to inhibit neutrophil elastase in the lung. Liver injury is thought to be caused by the hepatotoxic effects of the retained α1-ATZ. In this study, we show that several “chemical chaperones,” which have been shown to reverse the cellular mislocalization or misfolding of other mutant plasma membrane, nuclear, and cytoplasmic proteins, mediate increased secretion of α1-ATZ. In particular, 4-phenylbutyric acid (PBA) mediated a marked increase in secretion of functionally active α1-ATZ in a model cell culture system. Moreover, oral administration of PBA was well tolerated by PiZ mice (transgenic for the human α1-ATZ gene) and consistently mediated an increase in blood levels of human α1-AT reaching 20–50% of the levels present in PiM mice and normal humans. Because clinical studies have suggested that only partial correction is needed for prevention of both liver and lung injury in α1-AT deficiency and PBA has been used safely in humans, it constitutes an excellent candidate for chemoprophylaxis of target organ injury in α1-AT deficiency.
Resumo:
In vivo, G protein-coupled receptors (GPCR) for neurotransmitters undergo complex intracellular trafficking that contribute to regulate their abundance at the cell surface. Here, we report a previously undescribed alteration in the subcellular localization of D1 dopamine receptor (D1R) that occurs in vivo in striatal dopaminoceptive neurons in response to chronic and constitutive hyperdopaminergia. Indeed, in mice lacking the dopamine transporter, D1R is in abnormally low abundance at the plasma membrane of cell bodies and dendrites and is largely accumulated in rough endoplasmic reticulum and Golgi apparatus. Decrease of striatal extracellular dopamine concentration with 6-hydroxydopamine (6- OHDA) in heterozygous mice restores delivery of the receptor from the cytoplasm to the plasma membrane in cell bodies. These results demonstrate that, in vivo, in the central nervous system, the storage in cytoplasmic compartments involved in synthesis and the membrane delivery contribute to regulate GPCR availability and abundance at the surface of the neurons under control of the neurotransmitter tone. Such regulation may contribute to modulate receptivity of neurons to their endogenous ligands and related exogenous drugs.
Resumo:
The grain of the self-pollinating diploid barley species offers two modes of producing recombinant enzymes or other proteins. One uses the promoters of genes with aleurone-specific expression during germination and the signal peptide code for export of the protein into the endosperm. The other uses promoters of the structural genes for storage proteins deposited in the developing endosperm. Production of a protein-engineered thermotolerant (1, 3–1, 4)-β-glucanase with the D hordein gene (Hor3–1) promoter during endosperm development was analyzed in transgenic plants with four different constructs. High expression of the enzyme and its activity in the endosperm of the mature grain required codon optimization to a C+G content of 63% and synthesis as a precursor with a signal peptide for transport through the endoplasmic reticulum and targeting into the storage vacuoles. Synthesis of the recombinant enzyme in the aleurone of germinating transgenic grain with an α-amylase promoter and the code for the export signal peptide yielded ≈1 μg⋅mg−1 soluble protein, whereas 54 μg⋅mg−1 soluble protein was produced on average in the maturing grain of 10 transgenic lines with the vector containing the gene for the (1, 3–1, 4)-β-glucanase under the control of the Hor3–1 promoter.
Resumo:
Signal recognition particles (SRPs) in the cytosols of prokaryotes and eukaryotes are used to target proteins to cytoplasmic membranes and the endoplasmic reticulum, respectively. The mechanism of targeting relies on cotranslational SRP binding to hydrophobic signal sequences. An organellar SRP identified in chloroplasts (cpSRP) is unusual in that it functions posttranslationally to localize a subset of nuclear-encoded thylakoid proteins. In assays that reconstitute thylakoid integration of the light harvesting chlorophyll-binding protein (LHCP), stromal cpSRP binds LHCP posttranslationally to form a cpSRP/LHCP transit complex, which is believed to represent the LHCP form targeted to thylakoids. In this investigation, we have identified an 18-aa sequence motif in LHCP (L18) that, along with a hydrophobic domain, is required for transit complex formation. Fusion of L18 to the amino terminus of an endoplasmic reticulum-targeted protein, preprolactin, led to transit complex formation whereas wild-type preprolactin exhibited no ability to form a transit complex. In addition, a synthetic L18 peptide, which competed with LHCP for transit complex formation, caused a parallel inhibition of LHCP integration. Translocation of proteins by the thylakoid Sec and Delta pH transport systems was unaffected by the highest concentration of L18 peptide examined. Our data indicate that a motif contained in L18 functions in precursor recruitment to the posttranslational SRP pathway, one of at least four different thylakoid sorting pathways used by chloroplasts.
Resumo:
Plant cells can respond qualitatively and quantitatively to a wide range of environmental signals. Ca2+ is used as an intracellular signal for volume regulation in response to external osmotic changes. We show here that the spatiotemporal patterns of hypo-osmotically induced Ca2+ signals vary dramatically with stimulus strength in embryonic cells of the marine alga Fucus. Biphasic or multiphasic Ca2+ signals reflect Ca2+ elevations in distinct cellular domains. These propagate via elemental Ca2+ release in nuclear or peripheral regions that are rich in endoplasmic reticulum. Cell volume regulation specifically requires Ca2+ elevation in apical peripheral regions, whereas an altered cell division rate occurs only in response to stimuli that cause Ca2+ elevation in nuclear regions.
Resumo:
The signal recognition particle (SRP) is a ribonucleoprotein composed of an Alu domain and an S domain. The S domain contains unique sequence SRP RNA and four SRP proteins: SRP19, SRP54, SRP68, and SRP72. SRP interacts with ribosomes to bring translating membrane and secreted proteins to the endoplasmic reticulum (ER) for proper processing. Additionally, SRP RNA is a member of a family of small nonribosomal RNAs found recently in the nucleolus, suggesting that the nucleolus is more plurifunctional than previously realized. It was therefore of interest to determine whether other SRP components localize to this intranuclear site. In transfected rat fibroblasts, green fluorescent protein fusions of SRP19, SRP68, and SRP72 localized to the nucleolus, as well as to the cytoplasm, as expected. SRP68 also accumulated in the ER, consistent with its affinity for the ER-bound SRP receptor. SRP54 was detected in the cytoplasm as a green fluorescent protein fusion and in immunofluorescence studies, but was not detected in the nucleolus. In situ hybridization experiments also revealed endogenous SRP RNA in the nucleolus. These results demonstrate that SRP RNA and three SRP proteins visit the nucleolus, suggesting that partial SRP assembly, or another unidentified activity of the SRP components, occurs at the nucleolus. SRP54 apparently interacts with nascent SRP beyond the nucleolus, consistent with in vitro reconstitution experiments showing that SRP19 must bind to SRP RNA before SRP54 binds. Our findings support the notion that the nucleolus is the site of assembly and/or interaction between the family of ribonucleoproteins involved in protein synthesis, in addition to ribosomes themselves.
Resumo:
Double transgenic mice [rat insulin promoter (RIP)-tumor necrosis factor (TNF) and RIP-CD80] whose pancreatic β cells release TNF and bear CD80 all develop an acute early (6 wk) and lethal diabetes mediated by CD8 T cells. The first ultrastructural changes observed in β cells, so far unreported, are focal lesions of endoplasmic reticulum swelling at the points of contact with islet-infiltrating lymphoblasts, followed by cytoplasmic, but not nuclear, apoptosis. Such double transgenic mice were made defective in either the perforin, Fas, or TNF pathways. Remarkably, diabetes was found to be totally independent of perforin and Fas. Mice lacking TNF receptor (TNFR) II had no or late diabetes, but only a minority had severe insulitis. Mice lacking the TNF-lymphotoxin (LTα) locus (whose sole source of TNF are the β cells) all had insulitis comparable to that of nondefective mice, but no diabetes or a retarded and milder form, with lesions suggesting different mechanisms of injury. Because both TNFR II and TNF-LTα mutations have complex effects on the immune system, these data do not formally incriminate membrane TNF as the major T cell mediator of this acute autoimmune diabetes; nevertheless, in the absence of involvement of the perforin or Fas cytotoxic pathways, membrane TNF appears to be the likeliest candidate.
Resumo:
In this study, we compared the transport of newly synthesized cholesterol with that of influenza virus hemagglutinin (HA) from the endoplasmic reticulum to the plasma membrane. The arrival of cholesterol on the cell surface was monitored by cyclodextrin removal, and HA transport was monitored by surface trypsinization and endoglycosidase H digestion. We found that disassembly of the Golgi complex by brefeldin A treatment resulted in partial inhibition of cholesterol transport while completely blocking HA transport. Further, microtubule depolymerization by nocodazole inhibited cholesterol and HA transport to a similar extent. When the partitioning of cholesterol into lipid rafts was analyzed, we found that newly synthesized cholesterol began to associate with low-density detergent-resistant membranes rapidly after synthesis, before it was detectable on the cell surface, and its raft association increased further upon chasing. When cholesterol transport was blocked by using 15°C incubation, the association of newly synthesized cholesterol with low-density detergent-insoluble membranes was decreased and cholesterol accumulated in a fraction with intermediate density. Our results provide evidence for the partial contribution of the Golgi complex to the transport of newly synthesized cholesterol to the cell surface and suggest that detergent-resistant membranes are involved in the process.
Resumo:
Molecular mechanisms that regulate in situ activation of ryanodine receptors (RY) in different cells are poorly understood. Here we demonstrate that caffeine (10 mM) released Ca2+ from the endoplasmic reticulum (ER) in the form of small spikes in only 14% of cultured fura-2 loaded beta cells from ob/ob mice. Surprisingly, when forskolin, an activator of adenylyl cyclase was present, caffeine induced larger Ca2+ spikes in as many as 60% of the cells. Forskolin or the phosphodiesterase-resistant PKA activator Sp-cAMPS alone did not release Ca2+ from ER. 4-Chloro-3-ethylphenol (4-CEP), an agent that activates RYs in other cell systems, released Ca2+ from ER, giving rise to a slow and small increase in [Ca2+]i in beta cells. Prior exposure of cells to forskolin or caffeine (5 mM) qualitatively altered Ca2+ release by 4-CEP, giving rise to Ca2+ spikes. In glucose-stimulated beta cells forskolin induced Ca2+ spikes that were enhanced by 3,9-dimethylxanthine, an activator of RYs. Analysis of RNA from islets and insulin-secreting βTC-3-cells by RNase protection assay, using type-specific RY probes, revealed low-level expression of mRNA for the type 2 isoform of the receptor (RY2). We conclude that in situ activation of RY2 in beta cells requires cAMP-dependent phosphorylation, a process that recruits the receptor in a functionally operative form.