155 resultados para replication slippage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In wild-type diploid cells of Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break (DSB) at the MAT locus can be efficiently repaired by gene conversion using the homologous chromosome sequences. Repair of the broken chromosome was nearly eliminated in rad52delta diploids; 99% lost the broken chromosome. However, in rad51delta diploids, the broken chromosomes were repaired approximately 35% of the time. None of these repair events were simple gene conversions or gene conversions with an associated crossover, instead, they created diploids homozygous for the MAT locus and all markers in the 100-kb region distal to the site of the DSB. In rad51delta diploids, the broken chromosome can apparently be inherited for several generations, as many of these repair events are found as sectored colonies, with one part being repaired and the other part being lost the broken chromosome. Similar events occur in about 2% of wild-type cells. We propose that a broken chromosome end can invade a homologous template in the absence of RAD51 and initiate DNA replication that may extend to the telomere, 100 or more kb away. Such break-induced replication appears to be similar to recombination-initiated replication in bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HIV-1 replication depends on the viral enzyme integrase that mediates integration of a DNA copy of the virus into the host cell genome. This enzyme represents a novel target to which antiviral agents might be directed. Three compounds, 3,5-dicaffeoylquinic acid, 1-methoxyoxalyl-3,5-dicaffeoylquinic acid, and L-chicoric acid, inhibit HIV-1 integrase in biochemical assays at concentrations ranging from 0.06-0.66 microgram/ml; furthermore, these compounds inhibit HIV-1 replication in tissue culture at 1-4 microgram/ml. The toxic concentrations of these compounds are fully 100-fold greater than their antiviral concentrations. These compounds represent a potentially important new class of antiviral agents that may contribute to our understanding of the molecular mechanisms of viral integration. Thus, the dicaffeoylquinic acids are promising leads to new anti-HIV therapeutics and offer a significant advance in the search for new HIV enzyme targets as they are both specific for HIV-1 integrase and active against HIV-1 in tissue culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Replication factor C (RFC, also called Activator I) is part of the processive eukaryotic DNA polymerase holoenzymes. The processive elongation of DNA chains requires that DNA polymerases are tethered to template DNA at primer ends. In eukaryotes the ring-shaped homotrimeric protein, proliferating cell nuclear antigen (PCNA), ensures tight template-polymerase interaction by encircling the DNA strand. Proliferating cell nuclear antigen is loaded onto DNA through the action of RFC in an ATP-dependent reaction. Human RFC is a protein complex consisting of five distinct subunits that migrate through SDS/polyacrylamide gels as protein bands of 140, 40, 38, 37, and 36 kDa. All five genes encoding the RFC subunits have been cloned and sequenced. A functionally identical RFC complex has been isolated from Saccharomyces cerevisiae and the deduced amino acid sequences among the corresponding human and yeast subunits are homologous. Here we report the expression of the five cloned human genes using an in vitro coupled transcription/translation system and show that the gene products form a complex resembling native RFC that is active in supporting an RFC-dependent replication reaction. Studies on the interactions between the five subunits suggest a cooperative mechanism in the assembly of the RFC complex. A three-subunit core complex, consisting of p36, p37, and p40, was identified and evidence is presented that p38 is essential for the interaction between this core complex and the large p140 subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formation of deletions by recombination between short direct repeats is thought to involve either a break-join or a copy-choice process. The key step of the latter is slippage of the replication machinery between the repeats. We report that the main replicase of Escherichia coli, DNA polymerase III holoenzyme, slips between two direct repeats of 27 bp that flank an inverted repeat of approximately equal 300bp. Slippage was detected in vitro, on a single-stranded DNA template, in a primer extension assay. It requires the presence of a short (8 bp) G+C-rich sequence at the base of a hairpin that can form by annealing of the inverted repeats. It is stimulated by (i) high salt concentration, which might stabilize the hairpin, and (ii) two proteins that ensure the processivity of the DNA polymerase III holoenzyme: the single-stranded DNA binding protein and the beta subunit of the polymerase. Slippage is rather efficient under optimal reaction conditions because it can take place on >50% of template molecules. This observation supports the copy-choice model for recombination between short direct repeats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high incidence of neurological disorders in patients afflicted with acquired immunodeficiency syndrome (AIDS) may result from human immunodeficiency virus type 1 (HIV-1) induction of chemotactic signals and cytokines within the brain by virus-encoded gene products. Transforming growth factor beta1 (TGF-beta1) is an immunomodulator and potent chemotactic molecule present at elevated levels in HIV-1-infected patients, and its expression may thus be induced by viral trans-activating proteins such as Tat. In this report, a replication-defective herpes simplex virus (HSV)-1 tat gene transfer vector, dSTat, was used to transiently express HIV-1 Tat in glial cells in culture and following intracerebral inoculation in mouse brain in order to directly determine whether Tat can increase TGF-beta1 mRNA expression. dSTat infection of Vero cells transiently transfected by a panel of HIV-1 long terminal repeat deletion mutants linked to the bacterial chloramphenicol acetyltransferase reporter gene demonstrated that vector-expressed Tat activated the long terminal repeat in a trans-activation response element-dependent fashion independent of the HSV-mediated induction of the HIV-1 enhancer, or NF-kappaB domain. Northern blot analysis of human astrocytic glial U87-MG cells transfected by dSTat vector DNA resulted in a substantial increase in steady-state levels of TGF-beta1 mRNA. Furthermore, intracerebral inoculation of dSTat followed by Northern blot analysis of whole mouse brain RNA revealed an increase in levels of TGF-beta1 mRNA similar to that observed in cultured glial cells transfected by dSTat DNA. These results provided direct in vivo evidence for the involvement of HIV-1 Tat in activation of TGF-beta1 gene expression in brain. Tat-mediated stimulation of TGF-beta1 expression suggests a novel pathway by which HIV-1 may alter the expression of cytokines in the central nervous system, potentially contributing to the development of AIDS-associated neurological disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replication initiator protein pi of plasmid R6K is known to interact with the seven iterons of the gamma origin/enhancer and activate distant replication origins alpha and beta (ori alpha and ori beta) by pi-mediated DNA looping. Here we show that pi protein specifically interacts in vitro with the host-encoded helicase DnaB. The site of interaction of pi on DnaB has been localized to a 37-aa-long region located between amino acids 151 and 189 of DnaB. The surface of pi that interacts with DnaB has been mapped to the N-terminal region of the initiator protein between residues 1 and 116. The results suggest that during initiation of replication, the replicative helicase DnaB is first recruited to the gamma enhancer by the pi protein. In a subsequent step, the helicase probably gets delivered from ori gamma to ori alpha and ori beta by pi-mediated DNA looping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) is caused by a defect in nucleotide excision repair. Patients in the complementation group E (XP-E) have the mildest form of the disease and the highest level of residual repair activity. About 20% of the cell strains derived from XP-E patients lack a damaged DNA-binding protein (DDB) activity that binds to ultraviolet-induced (6-4) photoproducts with high affinity. We report here that cell-free extracts prepared from XP-E cell strains that either lacked or contained DDB activity were severely defective in excising DNA damage including (6-4) photoproducts. However, this excision activity defect was not restored by addition of purified DDB that, in fact, inhibited removal of (6-4) photoproducts by the human excision nuclease reconstituted from purified proteins. Extensive purification of correcting activity from HeLa cells revealed that the correcting activity is inseparable from the human replication/repair protein A [RPA (also known as human single stranded DNA binding protein, HSSB)]. Indeed, supplementing XP-E extracts with recombinant human RPA purified from Escherichia coli restored excision activity. However, no mutation was found in the genes encoding the three subunits of RPA in an XP-E (DDB-) cell line. It is concluded that RPA functionally complements XP-E extracts in vitro, but it is not genetically altered in XP-E patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction of genetic elements derived from a viral pathogen's genome may be used to reduce the vectorial capacity of mosquitoes for that virus. A double subgenomic Sindbis virus expression system was utilized to transcribe sequences of LaCrosse (LAC) virus small (S) or medium (M) segment RNA in sense or antisense orientation; wild-type Sindbis and LaCrosse viruses have single-stranded RNA genomes, the former being positive sense and the latter being negative sense. Recombinant viruses were generated and used to infect Aedes albopictus (C6/36) mosquito cells, which were challenged with wild-type LAC virus and then assayed for LAC virus replication. Several recombinant viruses containing portions of the LAC S segment were capable of inducing varying degrees of interference to the challenge virus. Cells infected with TE/3'2J/ANTI-S virus, expressing full-length negative-sense S RNA of LAC virus, yielded 3-6 log10TCID50 (tissue culture 50% infective dose) less LAC virus per ml than did cells infected with a double subgenomic sindbis virus containing no LAC insert. When C6/36 cells infected with TE/3'2J/ANTI-S were challenged with closely related heterologous bunyaviruses, a similar inhibitory effect was seen. Adult Ae. triseriatus mosquitoes infected with TE/3'2J/ANTI-S were also resistant to challenge by LAC virus. Organs that were productively infected by the double subgenomic Sindbis virus expressing the LAC anti-S sequences demonstrated little LAC virus or antigen. These studies indicate that expression of carefully selected antiviral sequences derived from the pathogen's genome may result in efficacious molecular viral interference in mosquito cells and, more importantly, in mosquitoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replication terminator protein (RTP) of Bacillus subtilis causes polar fork arrest at replication termini by sequence-specific interaction of two dimeric proteins with the terminus sequence. The crystal structure of the RTP protein has been solved, and the structure has already provide valuable clues regarding the structural basis of its function. However, it provides little information as to the surface of the protein involved in dimer-dimer interaction. Using site-directed mutagenesis, we have identified three sites on the protein that appear to mediate the dimer-dimer interaction. Crystallographic analysis of one of the mutant proteins (Y88F) showed that its structure is unaltered when compared to the wild-type protein. The locations of the three sites suggested a model for the dimer-dimer interaction that involves an association between two beta-ribbon motifs. This model is supported by a fourth mutation that was predicted to disrupt the interaction and was shown to do so. Biochemical analyses of these mutants provide compelling evidence that cooperative protein-protein interaction between two dimers of RTP is essential to impose polar blocks to the elongation of both DNA and RNA chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenovirus (Ad) vectors have been extensively used to deliver recombinant genes to a great variety of cell types in vitro and in vivo. Ad-based vectors are available that replace the Ad early region 1 (E1) with recombinant foreign genes. The resultant E1-deleted vectors can then be propagated on 293 cells, a human embryonal kidney cell line that constitutively expresses the E1 genes. Unfortunately, infection of cells and tissues in vivo results in low-level expression of Ad early and late proteins (despite the absence of E1 activity) resulting in immune recognition of virally infected cells. The infected cells are subsequently eliminated, resulting in only a transient expression of foreign genes in vivo. We hypothesize that a second-generation Ad vector with a deletion of viral genes necessary for Ad genome replication should block viral DNA replication and decrease viral protein production, resulting in a diminished immune response and extended duration of foreign gene expression in vivo. As a first step toward the generation of such a modified vector, we report the construction of cell lines that not only express the E1 genes but also constitutively express the Ad serotype 2 140-kDa DNA polymerase protein, one of three virally encoded proteins essential for Ad genome replication. The Ad polymerase-expressing cell lines support the replication and growth of H5ts36, an Ad with a temperature-sensitive mutation of the Ad polymerase protein. These packaging cell lines can be used to prepare Ad vectors deleted for the E1 and polymerase functions, which should facilitate development of viral vectors for gene therapy of human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broad host range plasmid RK2 replicates and regulates its copy number in a wide range of Gram-negative bacteria. The plasmid-encoded trans-acting replication protein TrfA and the origin of replication oriV are sufficient for controlled replication of the plasmid in all Gram-negative bacteria tested. The TrfA protein binds specifically to direct repeat sequences (iterons) at the origin of replication. A replication control model, designated handcuffing or coupling, has been proposed whereby the formation of coupled TrfA-oriV complexes between plasmid molecules results in hindrance of origin activity and, consequently, a shut-down of plasmid replication under conditions of higher than normal copy number. Therefore, according to this model, the coupling activity of an initiation protein is essential for copy number control and a copy-up initiation protein mutant should have reduced ability to form coupled complexes. To test this model for plasmid RK2, two previously characterized copy-up TrfA mutations, trfA-254D and trfA-267L, were combined and the resulting copy-up double mutant TFrfA protein TrfA-254D/267L was characterized. Despite initiating runaway (uncontrolled) replication in vivo, the copy-up double-mutant TrfA protein exhibited replication kinetics similar to the wild-type protein in vitro. Purified TrfA-254D, TrfA-267L, and TrfA-254D/267L proteins were then examined for binding to the iterons and for coupling activity using an in vitro ligase-catalyzed multimerization assay. It was found that both single and double TrfA mutant proteins exhibited substantially reduced (single mutants) or barely detectable (double mutant) levels of coupling activity while not being diminished in their capacity to bind to the origin of replication. These observations provide direct evidence in support of the coupling model of replication control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A satellite RNA of 836 nt depends on the bamboo mosaic potexvirus (BaMV) for its replication and encapsulation. The BaMV satellite RNA (satBaMV) contains a single open reading frame encoding a 20-kDa nonstructural protein. A full-length infectious cDNA clone has been generated downstream of the T7 RNA polymerase promoter. To investigate the role of the 20-kDa protein encoded by satBaMV, satBaMV transcripts containing mutations in the open reading frame were tested for their ability to replicate in barley protoplasts and in Chenopodium quinoa using BaMV RNA as a helper genome. Unlike other large satellite RNAs, mutants in the open reading frame did not block their replication, suggesting that the 20-kDa protein is not essential for satBaMV replication. Precise replacement of the open reading frame with sequences encoding chloramphenicol acetyltransferase resulted in high level expression of chloramphenicol acetyltransferase in infected C. quinoa, indicating that satBaMV is potentially useful as a satellite-based expression vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-DNA interactions were studied in vivo at the region containing a human DNA replication origin, located at the 3' end of the lamin B2 gene and partially overlapping the promoter of another gene, located downstream. DNase I treatment of nuclei isolated from both exponentially growing and nonproliferating HL-60 cells showed that this region has an altered, highly accessible, chromatin structure. High-resolution analysis of protein-DNA interactions in a 600-bp area encompassing the origin was carried out by the in vivo footprinting technique based on the ligation-mediated polymerase chain reaction. In growing HL-60 cells, footprints at sequences homologous to binding sites for known transcription factors (members of the basic-helix-loop-helix family, nuclear respiratory factor 1, transcription factor Sp1, and upstream binding factor) were detected in the region corresponding to the promoter of the downstream gene. Upon conversion of cells to a nonproliferative state, a reduction in the intensity of these footprints was observed that paralleled the diminished transcriptional activity of the genomic area. In addition to these protections, in close correspondence to the replication initiation site, a prominent footprint was detected that extended over 70 nucleotides on one strand only. This footprint was absent from nonproliferating HL-60 cells, indicating that this specific protein-DNA interaction might be involved in the process of origin activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the fission yeast Schizosaccharomyces pombe the cdc18'+gene is required both for initiation of DNA replication and for coupling mitosis to the completion of S phase. Cells lacking Cdc18 fail to enter S phase but still undergo nuclear division. Expression of cdc18+ is sufficient to drive a G1-arrested cdc10ts mutant into the S phase of the cell cycle, indicating that cdc18+ represents a critical link between passage through START and the initiation of DNA replication. Here we show that Cdcl8 is a highly unstable protein that is expressed only once per cell cycle at the boundary between GI and S phase. De novo synthesis of Cdc18 is required before, but not after, the initiation of DNA replication, indicating that Cdc18 function is not necessary once the initiation event has occurred. Overproduction of the protein results in an accumulation of cells with DNA content of greater than 2C and delays mitosis, suggesting that Cdc18 is sufficient to cause reinitiation of DNA replication within a given cell cycle. Our data indicate that the synthesis of Cdc18 protein is a critical rate-limiting step in the initiation of DNA replication during each cell cycle. The extreme lability of the protein may contribute to the prevention of reinitiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quinoxaline nonnucleoside RT inhibitor (NNRTI) (S)-4-isopropoxycarbonyl-6-methoxy-3-(methylthiomethyl)-3,4- dihydroquinoxaline-2(1H)-thione (HBY 097) was used to select for drug-resistant HIV-1 variants in vitro. The viruses first developed mutations affecting the NNRTI-binding pocket, and five of six strains displayed the RT G190-->E substitution, which is characteristic for HIV-1 resistance against quinoxalines. In one variant, a new mutant (G190-->Q) most likely evolved from preexisting G190-->E mutants. The negative charge introduced by the G190-->E substitution was maintained at that site of the pocket by simultaneous selection for V179-->D together with G190-->Q. After continued exposure to the drug, mutations at positions so far known to be specific for resistance against nucleoside RT inhibitors (NRTIs) (L74-->V/I and V75-->L/I) were consistently detected in all cultures. The inhibitory activities of the cellular conversion product of 2',3'-dideoxyinosine (ddI, didanosine), 2',3'-dideoxyadenosine (ddA) and of 2',3'-didehydro-3'-deoxythymidine (d4T, stavudine) against these late-passage viruses were shown to be enhanced with the L74-->V/I RT mutant virus as compared with the wild-type (wt) HIV-1MN isolate. Clonal analysis proved linkage of the codon 74 and codon 75 mutations to the NNRTI-specific mutations in all RT gene fragments. The nonnucleoside- and nucleoside-resistance mutation sites are separated by approximately 35 A. We propose that the two sites "communicate" through the template-primer which is situated in the DNA-binding cleft between these two sites. Quinoxalines cause high selective pressure on HIV-1 replication in vitro; however, the implication of these findings for the treatment of HIV-1 infection has yet to be determined.