164 resultados para phosphorylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the induction of long-term potentiation (LTP) in hippocampal slices adenosine triphosphate (ATP) is secreted into the synaptic cleft, and a 48 kDa/50 kDa protein duplex becomes phosphorylated by extracellular ATP. All the criteria required as evidence that these two proteins serve as principal substrates of ecto-protein kinase activity on the surface of hippocampal pyramidal neurons have been fulfilled. This phosphorylation activity was detected on the surface of pyramidal neurons assayed after synaptogenesis, but not in immature neurons nor in glial cells. Addition to the extracellular medium of a monoclonal antibody termed mAb 1.9, directed to the catalytic domain of protein kinase C (PKC), inhibited selectively this surface protein phosphorylation activity and blocked the stabilization of LTP induced by high frequency stimulation (HFS) in hippocampal slices. This antibody did not interfere with routine synaptic transmission nor prevent the initial enhancement of synaptic responses observed during the 1-5 min period immediately after the application of HFS (the induction phase of LTP). However, the initial increase in the slope of excitatory postsynaptic potentials, as well as the elevated amplitude of the population spike induced by HFS, both declined gradually and returned to prestimulus values within 30-40 min after HFS was applied in the presence of mAb 1.9. A control antibody that binds to PKC but does not inhibit its activity had no effect on LTP. The selective inhibitory effects observed with mAb 1.9 provide the first direct evidence of a causal role for ecto-PK in the maintenance of stable LTP, an event implicated in the process of learning and the formation of memory in the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently analyzed experimental studies of mammalian muscle glycogen synthesis using metabolic control analysis and concluded that glycogen synthase (GSase) does not control the glycogenic flux but rather adapts to the flux which is controlled bv the activity of the proximal glucose transport and hexokinase steps. This model did not provide a role for the well established relationship between GSase fractional activity, determined by covalent phosphorylation, and the rate of glycogen synthesis. Here we propose that the phosphorylation of GSase, which alters the sensitivity to allosteric activation by glucose 6-phosphate (G6P), is a mechanism for controlling the concentration of G6P instead of controlling the flux. When the muscle cell is exposed to conditions which favor glycogen synthesis such as high plasma insulin and glucose concentrations the fractional activity of GSase is increased in coordination with increases in the activity of glucose transport and hexokinase. This increase in GSase fractional activity helps to maintain G6P homeostasis by reducing the G6P concentration required to activate GSase allosterically to match the flux determined by the proximal reactions. This role for covalent phosphorylation also provides a novel solution to the Kacser and Acarenza paradigm which requires coordinated activity changes of the enzymes proximal and distal to a shared intermediate, to avoid unwanted flux changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

c-Abl is a nonreceptor tyrosine kinase that is activated by certain DNA-damaging agents. The present studies demonstrate that nuclear c-Abl binds constitutively to the protein tyrosine phosphatase SHPTP1. Treatment with ionizing radiation is associated with c-Abl-dependent tyrosine phosphorylation of SHPTP1. The results demonstrate that the SH3 domain of c-Abl interacts with a WPDHGVPSEP motif (residues 417-426) in the catalytic domain of SHPTP1 and that c-Abl phosphorylates C terminal Y536 and Y564 sites. The functional significance of the c-Abl-SHPTP1 interaction is supported by the demonstration that, like c-Abl, SHPTP1 regulates the induction of Jun kinase activity following DNA damage. These findings indicate that SHPTP1 is involved in the response to genotoxic stress through a c-Abl-dependent mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treatment of quiescent Swiss 3T3 fibroblasts with serum, or with the phosphatase inhibitors okadaic acid and vanadate, induced a 2- to 11-fold activation of the serine/ threonine RAC protein kinase (RAC-PK). Kinase activation was accompanied by decreased mobility of RAC-PK on SDS/PAGE such that three electrophoretic species (a to c) of the kinase were detected by immunoblot analysis, indicative of differentially phosphorylated forms. Addition of vanadate to arrested cells increased the RAC-PK phosphorylation level 3-to 4-fold. Unstimulated RAC-PK was phosphorylated predominantly on serine, whereas the activated kinase was phosphorylated on both serine and threonine residues. Treatment of RAC-PK in vitro with protein phosphatase 2A led to kinase inactivation and an increase in electrophoretic mobility. Deletion of the N-terminal region containing the pleckstrin homology domain did not affect RAC-PK activation by okadaic acid, but it reduced vanadate-stimulated activity and also blocked the serum-induced activation. Deletion of the serine/threonine rich C-terminal region impaired both RAC-PKalpha basal and vanadate-stimulated activity. Studies using a kinase-deficient mutant indicated that autophosphorylation is not involved in RAC-PKalpha activation. Stimulation of RAC-PK activity and electrophoretic mobility changes induced by serum were sensitive to wortmannin. Taken together the results suggest that RAC-PK is a component of a signaling pathway regulated by phosphatidylinositol (PI) 3-kinase, whose action is required for RAC-PK activation by phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strongly rectifying IRK-type inwardly rectifying K+ channels are involved in the control of neuronal excitability in the mammalian brain. Whole-cell patch-clamp experiments show that cloned rat IRK1 (Kir 2.1) channels, when heterologously expressed in mammalian COS-7 cells, are inhibited following the activation of coexpressed serotonin (5-hydroxytryptamine) type 1A receptors by receptor agonists. Inhibition is mimicked by internal perfusion with GTP[gamma-S] and elevation of internal cAMP concentrations. Addition of the catalytic subunits of protein kinase A (PKA) to the internal recording solution causes complete inhibition of wild-type IRK1 channels, but not of mutant IRK1(S425N) channels in which a C-terminal PKA phosphorylation site has been removed. Our data suggest that in the nervous system serotonin may negatively control IRK1 channel activity by direct PKA-mediated phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has previously been argued that the repressor of protein synthesis initiation factor 4E, 4E-BP1, is a direct in vivo target of p42mapk. However, the immunosuppressant rapamycin blocks serum-induced 4E-BP1 phosphorylation and, in parallel, p70s6k activation, with no apparent effect on p42mapk activation. Consistent with this finding, the kinetics of serum-induced 4E-BP1 phosphorylation closely follow those of p70s6k activation rather than those of p42mapk. More striking, insulin, which does not induce p42mapk activation in human 293 cells or Swiss mouse 3T3 cells, induces 4E-BP1 phosphorylation and p70s6k activation in both cell types. Anisomycin, which, like insulin, does not activate p42mapk, promotes a small parallel increase in 4E-BP1 phosphorylation and p70s6k activation. The insulin effect on 4E-BP1 phosphorylation and p70s6k activation in both cell types is blocked by SQ20006, wortmannin, and rapamycin. These three inhibitors have no effect on p42mapk activation induced by phorbol 12-tetradecanoate 13-acetate, though wortmannin partially suppresses both the p70s6k response and the 4E-BP1 response. Finally, in porcine aortic endothelial cells stably transfected with either the wild-type platelet-derived growth factor receptor or a mutant receptor bearing the double point mutation 740F/751F, p42mapk activation in response to platelet-derived growth factor is unimpaired, but increased 4E-BP1 phosphorylation is ablated, as previously reported for p70s6k. The data presented here demonstrate that 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hedgehog gene (hh) of Drosophila melanogaster exerts both short- and long-range effects on cell patterning during development. The product of hedgehog is a secreted protein that apparently acts by triggering an intra-cellular signaling pathway, but little is known about the details of that pathway. The Drosophila gene fused (fu) encodes a serine/threonine-protein kinase that genetic experiments have implicated in signaling initiated by hedgehog. Here we report that the fused protein is phosphorylated during the course of Drosophila embryogenesis, as a result of hedgehog activity. In cell culture, phosphorylation of fused protein occurs in response to the biologically active form of hedgehog and cannot be blocked by activation of protein kinase A, which is thought to be an antagonist of signaling from hedgehog. These results suggest that fused and protein kinase A function downstream of hedgehog but in parallel pathways that eventually converge distal to fused. The reconstruction of signaling from hedgehog in cell culture should provide further access to the mechanisms by which hedgehog acts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-specific activation of the transcription factor sigma F during sporulation in Bacillus subtilis is controlled by a regulatory pathway involving the proteins SpoIIE, SpoIIAA, and SpoIIAB. SpoIIAB is an antagonist of sigma F, and SpoIIAA, which is capable of overcoming SpoIIAB-mediated inhibition of sigma F, is an antagonist of SpoIIAB. SpoIIAA is, in turn, negatively regulated by SpoIIAB, which phosphorylates SpoIIAA on serine 58. SpoIIAA is also positively regulated by SpoIIE, which dephosphorylates SpoIIAA-P, the phosphorylated form of SpoIIAA. Here, isoelectric focusing and Western blot analysis were used to examine the phosphorylation state of SpoIIAA in vivo. SpoIIAA was found to be largely in the phosphorylated state during sporulation in wild-type cells but a significant portion of the protein that was unphosphorylated could also be detected. Consistent with the idea that SpoIIE governs dephosphorylation of SpoIIAA-P, SpoIIAA was entirely in the phosphorylated state in spoIIE mutant cells. Conversely, overexpression of spoIIE led to an increase in the ratio of unphosphorylated SpoIIAA to SpoIIAA-P and caused inappropriate activation of sigma F in the predivisional sporangium. We also show that a mutant form of SpoIIAA (SpoIIAA-S58T) in which serine 58 was replaced with threonine was present exclusively as SpoIIAA-P, a finding that confirms previous biochemical evidence that the mutant protein is an effective substrate for the SpoIIAB kinase but that SpoIIAA-S58T-P cannot be dephosphorylated by SpoIIE. We conclude that SpoIIE plays a crucial role in controlling the phosphorylation state of SpoIIAA during sporulation and thus in governing the cell-specific activation of sigma F.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine if nitration of tyrosine residues by peroxynitrite (PN), which can be generated endogenously, can disrupt the phosphorylation of tyrosine residues in proteins involved in cell signaling networks, we studied the effect of PN-promoted nitration of tyrosine residues in a pentadecameric peptide, cdc2(6-20)NH2, on the ability of the peptide to be phosphorylated. cdc2(6-20)NH2 corresponds to the tyrosine phosphorylation site of p34cdc2 kinase, which is phosphorylated by lck kinase (lymphocyte-specific tyrosine kinase, p56lck). PN nitrates both Tyr-15 and Tyr-19 of the peptide in phosphate buffer (pH 7.5) at 37 degrees C. Nitration of Tyr-15. which is the phosphorylated amino acid residue, inhibits completely the phosphorylation of the peptide. The nitration reaction is enhanced by either Fe(III)EDTA or Cu(II)-Zn(II)-superoxide dismutase (Cu,Zn-SOD). The kinetic data are consistent with the view that reactions of Fe(111)EDTA or Cu,Zn-SOD with the cis form of PN yield complexes in which PN decomposes more slowly to form N02+, the nitrating agent. Thus, the nitration efficiency of PN is enhanced. These results are discussed from the point of view that PN-promoted nitration will result in permanent impairment of cyclic cascades that control signal transduction processes and regulate cell cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential functional significance of human 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] receptor (hVDR) phosphorylation at Ser-208 was evaluated by cotransfecting COS-7 kidney cells with hVDR constructs and the catalytic subunit of human casein kinase 11 (CK-11). Under these conditions, hVDR is intensely phosphorylated in a reaction that depends on both CK-II and the presence of Ser-208. The resulting hyperphosphorylated receptor is unaltered in its kinetics for binding the 1,25(OH)2D3 ligand, its partitioning into the nucleus, and its ability to associate with a vitamin D responsive element. Replacement of Ser-208 with glycine or alanine indicates that phosphorylation of hVDR at Ser-208 is not obligatory for 1,25(OH)2D3 action, but coexpression of wild-type hVDR and CK-11 elicits a dose-dependent enhancement of 1,25(OH)2D3-stimulated transcription of a vitamin D responsive element reporter construct. This enhancement by CK-II is abolished by mutating Ser-208 to glycine or alanine and does not occur with glucocorticoid receptor-mediated transcription. Therefore, phosphorylation of hVDR by CK-11 at Ser-208 specifically modulates its transcriptional capacity, suggesting that this covalent modification alters the conformation of VDR to potentiate its interaction with the machinery for DNA transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of neurotrophins to modulate the survival and differentiation of neuronal populations involves the Trk/MAP (mitogen-activated protein kinase) kinase signaling pathway. More recently, neurotrophins have also been shown to regulate synaptic transmission. The synapsins are a family of neuron-specific phosphoproteins that play a role in regulation of neurotransmitter release, in axonal elongation, and in formation and maintenance of synaptic contacts. We report here that synapsin I is a downstream effector for the neurotrophin/Trk/MAP kinase cascade. Using purified components, we show that MAP kinase stoichiometrically phosphorylated synapsin I at three sites (Ser-62, Ser-67, and Ser-549). Phosphorylation of these sites was detected in rat brain homogenates, in cultured cerebrocortical neurons, and in isolated presynaptic terminals. Brain-derived neurotrophic factor and nerve growth factor upregulated phosphorylation of synapsin I at MAP kinase-dependent sites in intact cerebrocortical neurons and PC12 cells, respectively, while KCl- induced depolarization of cultured neurons decreased the phosphorylation state at these sites. MAP kinase-dependent phosphorylation of synapsin I significantly reduced its ability to promote G-actin polymerization and to bundle actin filaments. The results suggest that MAP kinase-dependent phosphorylation of synapsin I may contribute to the modulation of synaptic plasticity by neurotrophins and by other signaling pathways that converge at the level of MAP kinase activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphoprotein phosducin (Pd) regulates many guanine nucleotide binding protein (G protein)-linked signaling pathways. In visual signal transduction, unphosphorylated Pd blocks the interaction of light-activated rhodopsin with its G protein (Gt) by binding to the beta gamma subunits of Gt and preventing their association with the Gt alpha subunit. When Pd is phosphorylated by cAMP-dependent protein kinase, it no longer inhibits Gt subunit interactions. Thus, factors that determine the phosphorylation state of Pd in rod outer segments are important in controlling the number of Gts available for activation by rhodopsin. The cyclic nucleotide dependencies of the rate of Pd phosphorylation by endogenous cAMP-dependent protein kinase suggest that cAMP, and not cGMP, controls Pd phosphorylation. The synthesis of cAMP by adenylyl cyclase in rod outer segment preparations was found to be dependent on Ca2+ and calmodulin. The Ca2+ dependence was within the physiological range of Ca2+ concentrations in rods (K1/2 = 230 +/- 9 nM) and was highly cooperative (n app = 3.6 +/- 0.5). Through its effect on adenylyl cyclase and cAMP-dependent protein kinase, physiologically high Ca2+ (1100 nM) was found to increase the rate of Pd phosphorylation 3-fold compared to the rate of phosphorylation at physiologically low Ca2+ (8 nM). No evidence for Pd phosphorylation by other (Ca2+)-dependent kinases was found. These results suggest that Ca2+ can regulate the light response at the level of Gt activation through its effect on the phosphorylation state of Pd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The consequences of Helicobacter pylori attachment to human gastric cells were examined by transmission electron microscopy and immunofluorescence microscopy. H. pylori attachment resulted in (i) effacement of microvilli at the site of attachment, (ii) cytoskeletal rearrangement directly beneath the bacterium, and (iii) cup/pedestal formation at the site of attachment. Double-immunofluorescence studies revealed that the cytoskeletal components actin, alpha-actinin, and talin are involved in the process. Immunoblot analysis showed that binding of H. pylori to AGS cells induced tyrosine phosphorylation of two host cell proteins of 145 and 105 kDa. These results indicate that attachment of H. pylori to gastric epithelial cells resembles that of enteropathogenic Escherichia coli. Coccoid H. pylori, which are thought to be terminally differentiated bacterial forms, are capable of binding and inducing cellular changes of the same sort as spiral H. pylori, including tyrosine phosphorylation of host proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fertilization in Chlamydomonas is initiated by adhesive interactions between gametes of opposite mating types through flagellar glycoproteins called agglutinins. Interactions between these cell adhesion molecules signal for the activation of adenylyl cyclase through an interplay of protein kinases and ultimately result in formation of a diploid zygote. One of the early events during adhesion-induced signal transduction is the rapid inactivation of a flagellar protein kinase that phosphorylates a 48-kDa protein in the flagella. We report the biochemical and molecular characterization of the 48-kDa protein. Experiments using a bacterially expressed fusion protein show that the 48-kDa protein is capable of autophosphorylation on serine and tyrosine and phosphorylation of bovine beta-casein on serine, confirming that the 48-kDa protein itself has protein kinase activity. This protein kinase exhibits limited homology to members of the eukaryotic protein kinase superfamily and may be an important element in a signaling pathway in fertilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the replication of human immunodeficiency virus type 1 (HIV-1), gag MA (matrix), a major structural protein of the virus, carries out opposing targeting functions. During virus assembly, gag MA is cotranslationally myristoylated, a modification required for membrane targeting of gag polyproteins. During virus infection, however, gag MA, by virtue of a nuclear targeting signal at its N terminus, facilitates the nuclear localization of viral DNA and establishment of the provirus. We now show that phosphorylation of gag MA on tyrosine and serine prior to and during virus infection facilitates its dissociation from the membrane, thus allowing it to translocate to the nucleus. Inhibition of gag MA phosphorylation either on tyrosine or on serine prevents gag MA-mediated nuclear targeting of viral nucleic acids and impairs virus infectivity. The requirement for gag MA phosphorylation in virus infection is underscored by our finding that a serine/threonine kinase is associated with virions of HIV-1. These results reveal a novel level of regulation of primate lentivirus infectivity.