166 resultados para mutant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have screened a collection of transposable-element-induced mutations for those which dominantly modify the extra R7 phenotype of a hypomorphic yan mutation. The members of one of the identified complementation groups correspond to disruptions of the tramtrack (ttk) gene. As heterozygotes, ttk alleles increase the percentage of R7 cells in yan mutant eyes. Just as yan mutations increase ectopic R7 cell formation, homozygous ttk mutant eye clones also contain supernumerary R7 cells. However, in contrast to yan, the formation of these cells in ttk mutant eye tissue is not necessarily dependent on the activity of the sina gene. Furthermore, although yan mutations dominantly interact with mutations in the Ras1, Draf, Dsor1, and rolled (rl) genes to influence R7 cell development, ttk mutations only interact with yan and rl gene mutations to affect this signaling pathway. Our data suggest that yan and ttk both function to repress inappropriate R7 cell development but that their mechanisms of action differ. In particular, TTK activity appears to be autonomously required to regulate a sina-independent mechanism of R7 determination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many resident membrane proteins of the endoplasmic reticulum (ER) do not have known retrieval sequences. Among these are the so-called tail-anchored proteins, which are bound to membranes by a hydrophobic tail close to the C terminus and have most of their sequence as a cytosolically exposed N-terminal domain. Because ER tail-anchored proteins generally have short (< or = 17 residues) hydrophobic domains, we tested whether this feature is important for localization, using cytochrome b5 as a model. The hydrophobic domain of cytochrome b5 was lengthened by insertion of five amino acids (ILAAV), and the localization of the mutant was analyzed by immunofluorescence in transiently transfected mammalian cells. While the wild-type cytochrome was localized to the ER, the mutant was relocated to the surface. This relocation was not due to the specific sequence introduced, as demonstrated by the ER localization of a second mutant, in which the original length of the membrane anchor was restored, while maintaining the inserted ILAAV sequence. Experiments with brefeldin A and with cycloheximide demonstrated that the extended anchor mutant reached the plasma membrane by transport along the secretory pathway. We conclude that the short membrane anchor of cytochrome b5 is important for its ER residency, and we discuss the relevance of this finding for other ER tail-anchored proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown elsewhere that acidification is an early event in apoptosis, preceding DNA cleavage. Cells expressing the most common mutation (delF508) of the cystic fibrosis transmembrane regulator (CFTR) exhibit a higher resting intracellular pH and are unable to secrete chloride and bicarbonate in response to cAMP. We hypothesized that defective acidification in cells expressing delF508 CFTR would interfere with the acidification that accompanies apoptosis, which in turn, would prevent endonuclease activation and cleavage of DNA. We therefore determined whether the function of the CFTR would affect the process of apoptosis in mouse mammary epithelial C127 cells stably transfected with the wild-type CFTR (C127/wt) or the delF508 mutation of the CFTR (C127/508). C127 cells possessed an acid endonuclease capable of DNA degradation at low pH. Sixteen hours after treatment with cycloheximide, C127/wt cells underwent cytoplasmic acidification. In contrast, C127/508 cells failed to demonstrate acidification. Furthermore, the C127/508 cells did not show nuclear condensation or DNA fragmentation detected by in situ nick-end labeling after treatment with cycloheximide or etoposide, in contrast to the characteristic features of apoptosis demonstrated by the C127/wt cells. Measurement of cell viability indicated a preservation of cell viability in C127/508 cells but not in C127/wt cells. That this resistance to the induction of apoptosis depended upon the loss of CFTR activity is shown by the finding that inhibition of the CFTR with diphenylamine carboxylate in C127/wt cells conferred similar protection. These findings suggest a role for the CFTR in acidification during the initiation of apoptosis in epithelial cells and imply that a failure to undergo programmed cell death could contribute to the pathogenesis of cystic fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) binds to a high-affinity heterodimeric receptor composed of a specific alpha chain and a common beta chain (beta(c)), which is shared with the receptors for interleukins 3 and 5. Hemopoietic cell survival requires GM-CSF binding this high-affinity receptor. We have recently developed the GM-CSF mutant E21R, which selectively binds to the alpha chain and behaves as a competitive GM-CSF antagonist. We have now examined the role of E21R on the survival of hemopoietic cells and found that E21R causes apoptosis (programmed cell death) of normal and malignant cells directly in the absence of GM-CSF. The direct apoptotic effect of E21R occurred in a dose- and time-dependent manner. Apoptosis by E21R was dependent on cells expressing the high-affinity GM-CSF receptor and could be blocked by GM-CSF. Significantly, apoptosis of the cells occurred even in the presence of the survival factors granulocyte CSF and stem cell factor but was prevented by engagement of beta(c) with interleukin 3. The initiation of apoptosis required phosphorylation, transcriptional activity, and protein synthesis. These findings support a model whereby binding of E21R to the alpha chain leads to apoptosis, while beta(c) plays an important role in cell survival. This model may be applicable to other multimeric cytokine receptors and offers a novel approach for the treatment of human leukemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebrovascular amyloid beta-protein (Abeta) deposition is a pathological feature of several related disorders including Alzheimer disease and hereditary cerebral hemorrhage with amyloidosis Dutch-type (HCHWA-D). HCHWA-D is caused by a point mutation in the gene that encodes the Abeta precursor and results in a Glu --> Gln substitution at position 22 of Abeta. In comparison to Alzheimer disease, the cerebrovascular Abeta deposition in HCHWA-D is generally more severe, often resulting in intracerebral hemorrhage when patients reach 50 years of age. We recently reported that Abeta(1-42), but not the shorter Abeta(1-40) induces pathologic responses in cultured human leptomeningeal smooth muscle cells including cellular degeneration that is accompanied by a marked increase in the levels of cellular Abeta precursor and soluble Abeta peptide. In the present study, we show that the HCHWA-D mutation converts the normally nonpathologic Abeta(1-40) into a highly pathologic form of the peptide for cultured human leptomeningeal smooth muscle cells. These findings suggest that these altered functional properties of HCHWA-D mutated Abeta may contribute to the early and often severe cerebrovascular pathology that is the hallmark of this disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the human Cu,Zn superoxide dismutase gene (SOD1) are found in 20% of kindreds with familial amyotrophic lateral sclerosis. Transgenic mice (line G1H) expressing a human SOD1 containing a mutation of Gly-93 --> Ala (G93A) develop a motor neuron disease similar to familial amyotrophic lateral sclerosis, but transgenic mice (line N1029) expressing a wild-type human SOD1 transgene do not. Because neurofilament (NF)-rich inclusions in spinal motor neurons are characteristic of amyotrophic lateral sclerosis, we asked whether mutant G1H and/or N1029 mice develop similar NF lesions. NF inclusions (i.e., spheroids, Lewy body-like inclusions) were first detected in spinal cord motor neurons of the G1H mice at 82 days of age about the time these mice first showed clinical evidence of disease. Other neuronal intermediate filament proteins (alpha-internexin, peripherin) also accumulated in these spheroids. The onset of accumulations of ubiquitin immunoreactivity in the G1H mice paralleled the emergence of vacuoles and NF-rich spheroids in neurons, but they did not colocalize exclusively with spheroids. In contrast, NF inclusions were not seen in the N1029 mice until they were 132 days old, and ubiquitin immunoreactivity was not increased in the N1029 mice even at 199 days of age. Astrocytosis in spinal cord was associated with a marked increase in glial fibrillary acidic protein immunoreactivity in the G1H mice, but not in the N1029 mice. Finally, comparative studies revealed a striking similarity between the cytoskeletal pathology in the G1H transgenic mice and in patients with amyotrophic lateral sclerosis. These findings link a specific SOD1 mutation with alterations in the neuronal cytoskeleton of patients with amyotrophic lateral sclerosis. Thus, neuronal cytoskeletal abnormalities may be implicated in the pathogenesis of human familial amyotrophic lateral sclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The final step in the pathway that provides for glycosylphosphatidylinositol (GPI) anchoring of cell-surface proteins occurs in the lumen of the endoplasmic reticulum and consists of a transamidation reaction in which fully assembled GPI anchor donors are substituted for specific COOH-terminal signal peptide sequences contained in nascent polypeptides. In previous studies we described a human K562 cell mutant line, designated class K, which assembles all the known intermediates of the GPI pathway but fails to display GPI-anchored proteins on its surface membrane. In the present study, we used mRNA encoding miniPLAP, a truncated form of placental alkaline phosphatase (PLAP), in in vitro assays with rough microsomal membranes (RM) of mutant K cells to further characterize the biosynthetic defect in this line. We found that RM from mutant K cells supported NH2-terminal processing of the nascent translational product, preprominiPLAP, but failed to show any detectable COOH-terminal processing of the resulting prominiPLAP to GPI-anchored miniPLAP. Proteinase K protection assays verified that NH2-terminal processed prominiPLAP was appropriately translocated into the endoplasmic reticulum lumen. The addition of hydrazine or hydroxylamine, which can substitute for GPI donors, to RM from wild-type or mutant cells defective in various intermediate biosynthetic steps in the GPI pathway produced large amounts of the hydrazide or hydroxamate of miniPLAP. In contrast, the addition of these nucleophiles to RM of class K cells yielded neither of these products. These data, taken together, lead us to conclude that mutant K cells are defective in part of the GPI transamidase machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously we showed that an Escherichia coli hemH mutant, defective in the ultimate step of heme synthesis, ferrochelatase, is somewhat better than 100-fold more sensitive than its wild-type parent in tumbling to blue light. Here we explore the effect of a hemG mutant, defective in the penultimate step, protoporphyrinogen oxidase. We found that a hemG mutant also is somewhat better than 100-fold more sensitive in tumbling to blue light compared to its wild-type parent. The amount of non-iron porphyrins accumulated in hemG or hemH mutants was more than 100-fold greater than in wild type. The nature of these accumulated porphyrins is described. When heme was present, as in the wild type, the non-iron (non-heme) porphyrins were maintained at a relatively low concentration and tumbling to blue light at an intensity effective for hemG or hemH did not occur. The function of tumbling to light is most likely to allow escape from the lethality of intense light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice carrying mutations in either the dominant white-spotting (W) or Steel (Sl) loci exhibit deficits in melanogenesis, gametogenesis, and hematopoiesis. W encodes the Kit receptor tyrosine kinase, while Sl encodes the Kit ligand, Steel factor, and the receptor-ligand pair are contiguously expressed at anatomical sites expected from the phenotypes of W and Sl mice. The c-kit and Steel genes are also both highly expressed in the adult murine hippocampus: Steel is expressed in dentate gyrus neurons whose mossy fiber axons synapse with the c-kit expressing CA3 pyramidal neurons. We report here that Sl/Sld mutant mice have a specific deficit in spatial learning. These mutant mice are also deficient in baseline synaptic transmission between the dentate gyrus and CA3 but show normal long-term potentiation in this pathway. These observations demonstrate a role for Steel factor/Kit signaling in the adult nervous system and suggest that a severe deficit in hippocampal-dependent learning need not be associated with reduced hippocampal long-term potentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major histocompatibility complex (MHC) class I and II molecules are loaded with peptides in distinct subcellular compartments. The transporter associated with antigen processing (TAP) is responsible for delivering peptides derived from cytosolic proteins to the endoplasmic reticulum, where they bind to class I molecules, while the invariant chain (Ii) directs class II molecules to endosomal compartments, where they bind peptides originating mostly from exogenous sources. Mice carrying null mutations of the TAP1 or Ii genes (TAP10) or Ii0, respectively) have been useful tools for elucidating the two MHC/peptide loading pathways. To evaluate to what extent these pathways functionally intersect, we have studied the biosynthesis of MHC molecules and the generation of T cells in Ii0TAP10 double-mutant mice. We find that the assembly and expression of class II molecules in Ii0 and Ii0TAP10 animals are indistinguishable and that formation and display of class I molecules is the same in TAP10 and Ii0TAP10 animals. Thymic selection in the double mutants is as expected, with reduced numbers of both CD4+ CD8- and CD4- CD8+ thymocyte compartments. Surprisingly, lymph node T-cell populations look almost normal; we propose that population expansion of peripheral T cells normalizes the numbers of CD4+ and CD8+ cells in Ii0TAP10 mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ADPglucose pyrophosphorylase (glucose-1-phosphate adenylyltransferase; ADP:alpha-D-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27) catalyzes a key regulatory step in alpha-glucan synthesis in bacteria and higher plants. We have previously shown that the expression of the cDNA sequences of the potato tuber large (LS) and small (SS) subunits yielded a functional heterotetrameric enzyme capable of complementing a mutation in the single AGP (glgC) structural gene of Escherichia coli. This heterologous complementation provides a powerful genetic approach to obtain biochemical information on the specific roles of LS and SS in enzyme function. By mutagenizing the LS cDNA with hydroxylamine and then coexpressing with wild-type SS in an E. coli glgC- strain, >350 mutant colonies were identified that were impaired in glycogen production. One mutant exhibited enzymatic and antigen levels comparable to the wild-type recombinant enzyme but required 45-fold greater levels of the activator 3-phosphoglycerate for maximum activity. Sequence analysis identified a single nucleotide change that resulted in the change of Pro-52 to Leu. This heterologous genetic system provides an efficient means to identify residues important for catalysis and allosteric functioning and should lead to novel approaches to increase plant productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 1A2 (CYP1A2) is a predominantly hepatic enzyme known to be important in the metabolism of numerous foreign chemicals of pharmacologic, toxicologic, and carcinogenic significance. CYP1A2 substrates include aflatoxin B1, acetaminophen, and a variety of environmental arylamines. To define better the developmental and metabolic functions of this enzyme, we developed a CYP1A2-deficient mouse line by homologous recombination in embryonic stem cells. Mice homozygous for the targeted Cyp1a2 gene, designated Cyp1a2(-/-), are completely viable and fertile; histologic examination of 15-day embryos, newborn pups, and 3-week-old mice revealed no abnormalities. No CYP1A2 mRNA was detected by Northern blot analysis. Moreover, mRNA levels of Cyp1a1, the other gene in the same subfamily, appear unaffected by loss of the Cyp1a2 gene. Because the muscle relaxant zoxazolamine is a known substrate for CYP1A2, we studied the Cyp1a2(-/-) genotype by using the zoxazolamine paralysis test: the Cyp1a2(-/-) mice exhibited dramatically lengthened paralysis times relative to the Cyp1a2(+/+) wild-type animals, and the Cyp1a2(+/-) heterozygotes showed an intermediate effect. Availability of a viable and fertile CYP1A2-deficient mouse line will provide a valuable tool for researchers wishing to define the precise role of CYP1A2 in numerous metabolic and pharmacokinetic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a dominant-negative approach in vivo to assess the strong, early upregulation of thyroid hormone receptor beta (TR beta) gene in response to thyroid hormone, characteristic of the onset of natural and thyroid hormone-induced amphibian metamorphosis, 3,3',5-Triiodo-thyronine (T3) treatment of organ cultures of premetamorphic Xenopus tadpole tails coinjected in vivo with the wild-type Xenopus TR beta (wt-xTR beta) and three different thyroid responsive element chloramphenicol acetyltransferase (TRE-CAT) reporter constructs, including a direct repeat +4 (DR +4) element in the -200/+87 fragment of the xTR beta promoter, resulted in a 4- to 8-fold enhancement of CAT activity. Two human C-terminal TR beta 1 mutants (delta-hTR beta 1 and Ts-hTR beta 1), an artificial Xenopus C-terminal deletion mutant (mt-xTR beta), and the oncogenic viral homology v-erbA, none of which binds T3, inhibited this T3 response of the endogenous wt-xTR in Xenopus XTC-2 cells cotransfected with the -1600/+87 xTR beta promoter-CAT construct, the potency of the dominant-negative effect of these mutant TRs being a function of the strength of their heterodimerization with Xenopus retinoid X receptor gamma. Coinjection of the dominant-negative Xenopus and human mutant TR beta s into Xenopus tadpole tails totally abolished the T3 responsiveness of the wt-xTR beta with different TREs, including the natural DR +4 TRE of the xTR beta promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microtubules play an important role in establishing cellular architecture. Neuronal microtubules are considered to have a role in dendrite and axon formation. Different portions of the developing and adult brain microtubules are associated with different microtubule-associated proteins (MAPs). The roles of each of the different MAPs are not well understood. One of these proteins, MAP1B, is expressed in different portions of the brain and has been postulated to have a role in neuronal plasticity and brain development. To ascertain the role of MAP1B, we generated mice which carry an insertion in the gene by gene-targeting methods. Mice which are homozygous for the modification die during embryogenesis. The heterozygotes exhibit a spectrum of phenotypes including slower growth rates, lack of visual acuity in one or both eyes, and motor system abnormalities. Histochemical analysis of the severely affected mice revealed that their Purkinje cell dendritic processes are abnormal, do not react with MAP1B antibodies, and show reduced staining with MAP1A antibodies. Similar histological and immunochemical changes were observed in the olfactory bulb, hippocampus, and retina, providing a basis for the observed phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wild-type actin and a mutant actin were isolated from yeast (Saccharomyces cerevisiae) and the polymerization properties were examined at pH 8.0 and 20 degrees C. The polymerization reaction was followed either by an increase in pyrene-labeled actin fluorescence or by a decrease in intrinsic fluorescence in the absence of pyrene-labeled actin. While similar to the properties of skeletal muscle actin, there are several important differences between the wild-type yeast and muscle actins. First, yeast actin polymerizes more rapidly than muscle actin under the same experimental conditions. The difference in rates may result from a difference in the steps involving formation of the nucleating species. Second, as measured with pyrene-labeled yeast actin, but not with intrinsic fluorescence, there is an overshoot in the fluorescence that has not been observed with skeletal muscle actin under the same conditions. Third, in order to simulate the polymerization process of wild-type yeast actin it is necessary to assume some fragmentation of the filaments. Finally, gelsolin inhibits polymerization of yeast actin but is known to accelerate the polymerization of muscle actin. A mutant actin (R177A/D179A) has also been isolated and studied. The mutations are at a region of contact between monomers across the long axis of the actin filament. This mutant polymerizes more slowly than wild type and filaments do not appear to fragment during polymerization. Elongation rates of the wild type and the mutant differ by only about 3-fold, and the slower polymerization of the mutant appears to result primarily from poorer nucleation.