136 resultados para intermediates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foldons, which are kinetically competent, quasi-independently folding units of a protein, may be defined using energy landscape analysis. Foldons can be identified by maxima in a scan of the ratio of a contiguous segment's energetic stability gap to the energy variance of that segment's molten globule states, reflecting the requirement of minimal frustration. The predicted foldons are compared with the exons and structural modules for 16 of the 30 proteins studied. Statistical analysis indicates a strong correlation between the energetically determined foldons and Go's geometrically defined structural modules, but there are marked sequence-dependent effects. There is only a weak correlation of foldons to exons. For gammaII-crystallin, myoglobin, barnase, alpha-lactalbumin, and cytochrome c the foldons and some noncontiguous clusters of foldons compare well with intermediates observed in experiment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray diffraction experiments revealed the structure of the N photointermediate of bacteriorhodopsin. Since the retinal Schiff base is reprotonated from Asp-96 during the M to N transition in the photocycle, and Asp-96 is reprotonated during the lifetime of the N intermediate, or immediately after, N is a key intermediate for understanding the light-driven proton pump. The N intermediate accumulates in large amounts during continuous illumination of the F171C mutant at pH 7 and 5 degrees Celsius. Small but significant changes of the structure were detected in the x-ray diffraction profile under these conditions. The changes were reversible and reproducible. The difference Fourier map indicates that the major change occurs near helix F. The observed diffraction changes between N and the original state were essentially identical to the diffraction changes reported for the M intermediate of the D96N mutant of bacteriorhodopsin. Thus, we find that the protein conformations of the M and N intermediates of the photocycle are essentially the same, in spite of the fact that in M the Schiff base is unprotonated and in N it is protonated. The observed structural change near helix F will increase access of the Schiff base and Asp-96 to the cytoplasmic surface and facilitate the proton transfer events that begin with the decay of the M state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A protein complex involved in apolipoprotein B (apoB) RNA editing, referred to as AUX240 (auxiliary factor containing p240), has been identified through the production of monoclonal antibodies against in vitro assembled 27S editosomes. The 240-kDa protein antigen of AUX240 colocalized with editosome complexes on immunoblots of native gels. Immunoadsorbed extracts were impaired in their ability to assemble editosomes beyond early intermediates and in their ability to edit apoB RNA efficiently. Supplementation of adsorbed extract with AUX240 restored both editosome assembly and editing activities. Several proteins, in addition to p240, ranging in molecular mass from 150 to 45 kDa coimmunopurify as AUX240 under stringent wash conditions. The activity of the catalytic subunit of the editosome APOBEC-1 and mooring sequence RNA binding proteins of 66 and 44 kDa could not be demonstrated in AUX240. The data suggest that p240 and associated proteins constitute an auxiliary factor required for efficient apoB RNA editing. We propose that the role of AUX240 may be regulatory and involve mediation or stabilization of interactions between APOBEC-1 subunits and editing site recognition proteins leading the assembly of the rat liver C/U editosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At alkaline pH the bacteriorhodopsin mutant D85N, with aspartic acid-85 replaced by asparagine, is in a yellow form (lambda max approximately 405 nm) with a deprotonated Schiff base. This state resembles the M intermediate of the wild-type photocycle. We used time-resolved methods to show that this yellow form of D85N, which has an initially unprotonated Schiff base and which lacks the proton acceptor Asp-85, transports protons in the same direction as wild type when excited by 400-nm flashes. Photoexcitation leads in several milliseconds to the formation of blue (630 nm) and purple (580 nm) intermediates with a protonated Schiff base, which decay in tens of seconds to the initial state (400 nm). Experiments with pH indicator dyes show that at pH 7, 8, and 9, proton uptake occurs in about 5-10 ms and precedes the slow release (seconds). Photovoltage measurements reveal that the direction of proton movement is from the cytoplasmic to the extracellular side with major components on the millisecond and second time scales. The slowest electrical component could be observed in the presence of azide, which accelerates the return of the blue intermediate to the initial yellow state. Transport thus occurs in two steps. In the first step (milliseconds), the Schiff base is protonated by proton uptake from the cytoplasmic side, thereby forming the blue state. From the pH dependence of the amplitudes of the electrical and photocycle signals, we conclude that this reaction proceeds in a similar way as in wild type--i.e., via the internal proton donor Asp-96. In the second step (seconds) the Schiff base deprotonates, releasing the proton to the extracellular side.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotactic responses in Escherichia coli are typically mediated by transmembrane receptors that monitor chemoeffector levels with periplasmic binding domains and communicate with the flagellar motors through two cytoplasmic proteins, CheA and CheY. CheA autophosphorylates and then donates its phosphate to CheY, which in turn controls flagellar rotation. E. coli also exhibits chemotactic responses to substrates that are transported by the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system (PTS). Unlike conventional chemoreception, PTS substrates are sensed during their uptake and concomitant phosphorylation by the cell. The phosphoryl groups are transferred from PEP to the carbohydrates through two common intermediates, enzyme I (EI) and phosphohistidine carrier protein (HPr), and then to sugar-specific enzymes II. We found that in mutant strains HPr-like proteins could substitute for HPr in transport but did not mediate chemotactic signaling. In in vitro assays, these proteins exhibited reduced phosphotransfer rates from EI, indicating that the phosphorylation state of EI might link the PTS phospho-relay to the flagellar signaling pathway. Tests with purified proteins revealed that unphosphorylated EI inhibited CheA autophosphorylation, whereas phosphorylated EI did not. These findings suggest the following model for signal transduction in PTS-dependent chemotaxis. During uptake of a PTS carbohydrate, EI is dephosphorylated more rapidly by HPr than it is phosphorylated at the expense of PEP. Consequently, unphosphorylated EI builds up and inhibits CheA autophosphorylation. This slows the flow of phosphates to CheY, eliciting an up-gradient swimming response by the cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small, single-module proteins that fold in a single cooperative step may be paradigms for understanding early events in protein-folding pathways generally. Recent experimental studies of the 64-residue chymotrypsin inhibitor 2 (CI2) support a nucleation mechanism for folding, as do some computer stimulations. CI2 has a nucleation site that develops only in the transition state for folding. The nucleus is composed of a set of adjacent residues (an alpha-helix), stabilized by long-range interactions that are formed as the rest of the protein collapses around it. A simple analysis of the optimization of the rate of protein folding predicts that rates are highest when the denatured state has little residual structure under physiological conditions and no intermediates accumulate. This implies that any potential nucleation site that is composed mainly of adjacent residues should be just weakly populated in the denatured state and become structured only in a high-energy intermediate or transition state when it is stabilized by interactions elsewhere in the protein. Hierarchical mechanisms of folding in which stable elements of structure accrete are unfavorable. The nucleation-condensation mechanism of CI2 fulfills the criteria for fast folding. On the other hand, stable intermediates do form in the folding of more complex proteins, and this may be an unavoidable consequence of increasing size and nucleation at more than one site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies of Saccharomyces cerevisiae have significantly advanced our understanding of the molecular mechanisms of meiotic chromosome behavior. Structural components of the synaptonemal complex have been identified and studies of mutants defective in synapsis have provided insight into the role of the synaptonemal complex in homolog pairing, genetic recombination, crossover interference, and meiotic chromosome segregation. There is compelling evidence that most or all meiotic recombination events initiate with double-strand breaks. Several intermediates in the double-strand break repair pathway have been characterized and mutants blocked at different steps in the pathway have been identified. With the application of genetic, molecular, cytological, and biochemical methods in a single organism, we can expect an increasingly comprehensive and unified view of the meiotic process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signal peptides direct the cotranslational targeting of nascent polypeptides to the endoplasmic reticulum (ER). It is currently believed that the signal recognition particle (SRP) mediates this targeting by first binding to signal peptides and then by directing the ribosome/nascent chain/SRP complex to the SRP receptor at the ER. We show that ribosomes can mediate targeting by directly binding to translocation sites. When purified away from cytosolic factors, including SRP and nascent-polypeptide-associated complex (NAC), in vitro assembled translation intermediates representing ribosome/nascent-chain complexes efficiently bound to microsomal membranes, and their nascent polypeptides could subsequently be efficiently translocated. Because removal of cytosolic factors from the ribosome/nascent-chain complexes also resulted in mistargeting of signalless nascent polypeptides, we previously investigated whether readdition of cytosolic factors, such as NAC and SRP, could restore fidelity to targeting. Without SRP, NAC prevented all nascent-chain-containing ribosomes from binding to the ER membrane. Furthermore, SRP prevented NAC from blocking ribosome-membrane association only when the nascent polypeptide contained a signal. Thus, NAC is a global ribosome-binding prevention factor regulated in activity by signal-peptide-directed SRP binding. A model presents ribosomes as the targeting vectors for delivering nascent polypeptides to translocation sites. In conjunction with signal peptides, SRP and NAC contribute to this specificity of ribosomal function by regulating exposure of a ribosomal membrane attachment site that binds to receptors in the ER membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L-Glutamate is the most common excitatory neurotransmitter in the brain and plays a crucial role in neuronal plasticity as well as in neurotoxicity. While a large body of literature describes the induction of immediate-early genes, including c-fos, fosB, c-jun, junB, zif/268, and krox genes by glutamate and agonists in neurons, very little is known about preexisting transcription factors controlling the induction of such genes. This prompted us to investigate whether stimulation of glutamate receptors can activate NF-kappa B, which is present in neurons in either inducible or constitutive form. Here we report that brief treatments with kainate or high potassium strongly activated NF-kappa B in granule cells from rat cerebellum. This was detected at the single cell level by immunostaining with a monoclonal antibody that selectively reacts with the transcriptionally active, nuclear form of NF-kappa B p65. The activation of NF-kappa B could be blocked with the antioxidant pyrrolidine dithiocarbamate, suggesting the involvement of reactive oxygen intermediates. The data may explain the kainate-induced cell surface expression of major histocompatibility complex class I molecules, which are encoded by genes known to be controlled by NF-kappa B. Moreover, NF-kappa B activity was found to change dramatically in neurons during development of the cerebellum between days 5 and 7 after birth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Folding of lysozyme from hen egg white was investigated by using interrupted refolding experiments. This method makes use of a high energy barrier between the native state and transient folding intermediates, and, in contrast to conventional optical techniques, it enables one to specifically monitor the amount of native molecules during protein folding. The results show that under strongly native conditions lysozyme can refold on parallel pathways. The major part of the lysozyme molecules (86%) refold on a slow kinetic pathway with well-populated partially folded states. Additionally, 14% of the molecules fold faster. The rate constant of formation of native molecules on the fast pathway corresponds well to the rate constant expected for folding to occur by a two-state process without any detectable intermediates. The results suggest that formation of the native state for the major fraction of lysozyme molecules is retarded compared with the direct folding process. Partially structured intermediates that transiently populate seem to be kinetically trapped in a conformation that can only slowly reach the native structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GroE proteins are molecular chaperones involved in protein folding. The general mechanism by which they facilitate folding is still enigmatic. One of the central open questions is the conformation of the GroEL-bound nonnative protein. Several suggestions have been made concerning the folding stage at which a protein can interact with GroEL. Furthermore, the possibility exists that binding of the nonnative protein to GroEL results in its unfolding. We have addressed these issues that are basic for understanding the GroE-mediated folding cycle by using folding intermediates of an Fab antibody fragment as molecular probes to define the binding properties of GroEL. We show that, in addition to binding to an early folding intermediate, GroEL is able to recognize and interact with a late quaternary-structured folding intermediate (Dc) without measurably unfolding it. Thus, the prerequisite for binding is not a certain folding stage of a nonnative protein. In contrast, general surface properties of nonnative proteins seem to be crucial for binding. Furthermore, unfolding of a highly structured intermediate does not necessarily occur upon binding to GroEL. Folding of Dc in the presence of GroEL and ATP involves cycles of binding and release. Because in this system no off-pathway reactions or kinetic traps are involved, a quantitative analysis of the reactivation kinetics observed is possible. Our results indicate that the association reaction of Dc and GroEL in the presence of ATP is rather slow, whereas in the absence of ATP association is several orders of magnitude more efficient. Therefore, it seems that ATP functions by inhibiting reassociation rather than promoting release of the bound substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In earlier studies it was shown that the mammalian translation system is highly organized in vivo and that the intermediates in the process, aminoacyl-tRNAs, are channeled--i.e., they are directly transferred from the aminoacyl-tRNA synthetases to the elongation factor to the ribosomes without dissociating into the cellular fluid. Here, we examine whether spent tRNAs leaving the ribosome enter the fluid phase or are transferred directly to their cognate aminoacyl-tRNA synthetases to complete a channeled tRNA cycle. Using a permeabilized CHO cell system that closely mimics living cells, we find that there is no leakage of endogenous tRNA during many cycles of translation, and protein synthesis remains linear during this period, even though free aminoacyl-tRNA is known to rapidly equilibrate between the inside and outside of these cells. We also find that exogenous tRNA and periodate-oxidized tRNA have no effect on protein synthesis in this system, indicating that they do not enter the translation machinery, despite the fact that exogenous tRNA rapidly distributes throughout the cells. Furthermore, most of the cellular aminoacyl-tRNA synthetases function only with endogenous tRNAs, although a portion can use exogenous tRNA molecules. However, aminoacylation of these exogenous tRNAs is strongly inhibited by oxidized tRNA; this inhibitor has no effect on endogenous aminoacylation. On the basis of these and the earlier observations, we conclude that endogenous tRNA is never free of the protein synthetic machinery at any stage of the translation process and, consequently, that there is a channeled tRNA cycle during protein synthesis in mammalian cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apomyoglobin folding proceeds through a molten globule intermediate (low-salt form; I1) that has been characterized by equilibrium (pH 4) and kinetic (pH 6) folding experiments. Of the eight alpha-helices in myoglobin, three (A, G, and H) are structured in I1, while the rest appear to be unfolded. Here we report on the structure and stability of a second intermediate, the trichloroacetate form of the molten globule intermediate (I2), which is induced either from the acid-unfolded protein or from I1 by > or = 5 mM sodium trichloroacetate. Circular dichroism measurements monitoring urea- and acid-induced unfolding indicate that I2 is more highly structured and more stable than I1. Although I2 exhibits properties closer to those of the native protein, one-dimensional NMR spectra show that it maintains the lack of fixed side-chain structure that is the hallmark of a molten globule. Amide proton exchange and 1H-15N two-dimensional NMR experiments are used to identify the source of the extra helicity observed in I2. The results reveal that the existing A, G, and H helices present in I1 have become more stable in I2 and that a fourth helix--the B helix--has been incorporated into the molten globule. Available evidence is consistent with I2 being an on-pathway intermediate. The data support the view that apomyoglobin folds in a sequential fashion through a single pathway populated by intermediates of increasing structure and stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial elicitors or attempted infection with an avirulent pathogen strain causes the rapid production of reactive oxygen intermediates. Recent findings indicate that H2O2 from this oxidative burst plays a central role in the orchestration of the hypersensitive response: (i) as the substrate driving the cross-linking of cell wall structural proteins to slow microbial ingress prior to the deployment of transcription-dependent defenses and to trap pathogens in cells destined to undergo hypersensitive cell death, (ii) as a local threshold trigger of this programmed death in challenged cells, and (iii) as a diffusible signal for the induction in adjacent cells of genes encoding cellular protectants such as glutathione S-transferase and glutathione peroxidase. These findings provide the basis for an integrated model for the orchestration of the localized hypersensitive resistance response to attack by an avirulent pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton translocation experiments with intact cells of Halobacterium salinarium overproducing sensory rhodopsin I (SRI) revealed transport activity of SRI in a two-photon process. The vectoriality of proton translocation depends on pH, being outwardly directed above, and inwardly directed below, pH 5.7. Activation of the transport cycle requires excitation of the initial dark state of SRI, SRI590, to form the intermediate SRI380. Action spectra identify the photocycle intermediates SRI380 and SRI520 as the two photochemically reactive species in the outwardly directed transport process. As shown by flash photolysis experiments, SRI520 undergoes a so-far unknown photochemical reaction to SRI380 with a half-time of <200 micros. Mutation of SRI residue Asp-76, the residue which is equivalent to the proton acceptor Asp-85 in bacteriorhodopsin, to asparagine leads to inactivation of proton translocation. This demonstrates that the underlying mechanisms of proton transport in both retinal proteins share similar features. However, SRI is to our knowledge the first case where photochemical reactions between two thermally unstable photoproducts of a retinal protein constitute a catalytic ion transport cycle.