123 resultados para filamentous hemagglutinin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The filamentous fungus Neurospora crassa possesses two nonhomologous high-affinity phosphate permeases, PHO-4 and PHO-5. We have isolated separate null mutants of these permeases, allowing us to study the remaining active transporter in vivo in terms of phosphate uptake and sensitivity to inhibitors. The specificity for the cotransported cation differs for PHO-4 and PHO-5, suggesting that these permeases employ different mechanisms for phosphate translocation. Phosphate uptake by PHO-4 is stimulated 85-fold by the addition of Na+, which supports the idea that PHO-4 is a Na(+)-phosphate symporter. PHO-5 is unaffected by Na+ concentration but is much more sensitive to elevated pH than is PHO-4. Presumably, PHO-5 is a H(+)-phosphate symporter. Na(+)-coupled symport is usually associated with animal cells. The finding of such a system in a filamentous fungus is in harmony with the idea that the fungal and animal kingdoms are more closely related to each other than either is to the plant kingdom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, two cell surface molecules, CD46 and moesin, have been found to be functionally associated with measles virus (MV) infectivity of cells. We investigated the receptor usage of MV wild-type, subacute sclerosing panencephalitis, and vaccine strains and their effect on the down-regulation of CD46 after infection. We found that the infection of human cell lines with all 19 MV strains tested was inhibitable with antibodies against CD46. In contrast, not all strains of MV led to the downregulation of CD46 following infection. The group of CD46 non-downregulating strains comprised four lymphotropic wild-type isolates designated AB, DF, DL, and WTF. Since the downregulation of CD46 is caused by interaction with newly synthesized MV hemagglutinin (MV-H), we tested the capability of recombinant MV-H proteins to downregulate CD46. Recombinant MV-H proteins of MV strains Edmonston, Halle, and CM led to the down-regulation of CD46, whereas those of DL and WTF did not. This observed differential downregulation by different MV strains has profound consequences, since lack of CD46 on the cell surface leads to susceptibility of cells to complement lysis. These results suggest that lymphotropic wild-type strains of MV which do not downregulate CD46 may have an advantage for replication in vivo. The relatively weak immune response against attenuated vaccine strains of MV compared with wild-type strains might be related to this phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sulfur regulatory system of Neurospora crassa is composed of a set of structural genes involved in sulfur catabolism controlled by a genetically defined set of trans-acting regulatory genes. These sulfur regulatory genes include cys-3+, which encodes a basic region-leucine zipper transcriptional activator, and the negative regulatory gene scon-2+. We report here that the scon-2+ gene encodes a polypeptide of 650 amino acids belonging to the expanding beta-transducin family of eukaryotic regulatory proteins. Specifically, SCON2 protein contains six repeated G beta-homologous domains spanning the C-terminal half of the protein. SCON2 represents the initial filamentous fungal protein identified in the beta-transducin group. Additionally, SCON2 exhibits a specific amino-terminal domain that potentially defines another subfamily of beta-transducin homologs. Expression of the scon-2+ gene has been examined using RNA hybridization and gel mobility-shift analysis. The dependence of scon-2+ expression on CYS3 function and the binding of CYS3 to the scon-2+ promoter indicate the presence of an important control loop within the N. crassa sulfur regulatory circuit involving CYS3 activation of scon-2+ expression. On the basis of the presence of beta-transducin repeats, the crucial role of SCON2 in the signal-response pathway triggered by sulfur limitation may be mediated by protein-protein interactions.