219 resultados para cell surface receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signaling by interferon gamma (IFN-gamma) requires two structurally related cell surface proteins: a ligand-binding polypeptide, known as the IFN-gamma receptor (IFN-gamma R), and an accessory factor. However, it is not known whether IFN-gamma forms a ternary complex with the IFN-gamma R and accessory factor to initiate signaling. Here we demonstrate complex formation between IFN-gamma and the two proteins, both in solution and at the cell surface. We observe complexes containing ligand, two molecules of IFN-gamma R (designated the IFN-gamma R alpha chain), and one or two molecules of accessory factor (designated the IFN-gamma R beta chain). Transfected cells expressing both IFN-gamma R chains bind IFN-gamma with higher affinity than do cells expressing alpha chain alone. Anti-beta-chain antibodies prevent the beta chain from participating in the ligand-receptor complex, reduce the affinity for IFN-gamma, and block signaling. Soluble alpha- or beta-chain extracellular domains also inhibit function. These results demonstrate that IFN-gamma signals via a high-affinity multisubunit complex that contains two types of receptor chain and suggest a potential approach to inhibiting specific actions of IFN-gamma by blocking the association of receptor subunits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, two cell surface molecules, CD46 and moesin, have been found to be functionally associated with measles virus (MV) infectivity of cells. We investigated the receptor usage of MV wild-type, subacute sclerosing panencephalitis, and vaccine strains and their effect on the down-regulation of CD46 after infection. We found that the infection of human cell lines with all 19 MV strains tested was inhibitable with antibodies against CD46. In contrast, not all strains of MV led to the downregulation of CD46 following infection. The group of CD46 non-downregulating strains comprised four lymphotropic wild-type isolates designated AB, DF, DL, and WTF. Since the downregulation of CD46 is caused by interaction with newly synthesized MV hemagglutinin (MV-H), we tested the capability of recombinant MV-H proteins to downregulate CD46. Recombinant MV-H proteins of MV strains Edmonston, Halle, and CM led to the down-regulation of CD46, whereas those of DL and WTF did not. This observed differential downregulation by different MV strains has profound consequences, since lack of CD46 on the cell surface leads to susceptibility of cells to complement lysis. These results suggest that lymphotropic wild-type strains of MV which do not downregulate CD46 may have an advantage for replication in vivo. The relatively weak immune response against attenuated vaccine strains of MV compared with wild-type strains might be related to this phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experimental manipulation of peptide growth hormones and their cellular receptors is central to understanding the pathways governing cellular signaling and growth control. Previous work has shown that intracellular antibodies targeted to the endoplasmic reticulum (ER) can be used to capture specific proteins as they enter the ER, preventing their transport to the cell surface. Here we have used this technology to inhibit the cell surface expression of the alpha subunit of the high-affinity interleukin 2 receptor (IL-2R alpha). A single-chain variable-region fragment of the anti-Tac monoclonal antibody was constructed with a signal peptide and a C-terminal ER retention signal. Intracellular expression of the single-chain antibody was found to completely abrogate cell surface expression of IL-2R alpha in stimulated Jurkat T cells. IL-2R alpha was detectable within the Jurkat cells as an immature 40-kDa form that was sensitive to endoglycosidase H, consistent with its retention in a pre- or early Golgi compartment. A single-chain antibody lacking the ER retention signal was also able to inhibit cell surface expression of IL-2R alpha although the mechanism appeared to involve rapid degradation of the receptor chain within the ER. These intracellular antibodies will provide a valuable tool for examining the role of IL-2R alpha in T-cell activation, IL-2 signal transduction, and the deregulated growth of leukemic cells which overexpress IL-2R alpha.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Developmental commitment involves activation of lineage-specific genes, stabilization of a lineage-specific gene expression program, and permanent inhibition of inappropriate characteristics. To determine how these processes are coordinated in early T cell development, the expression of T and B lineage-specific genes was assessed in staged subsets of immature thymocytes. T lineage characteristics are acquired sequentially, with germ-line T cell antigen receptor-β transcripts detected very early, followed by CD3ɛ and terminal deoxynucleotidyl transferase, then pTα, and finally RAG1. Only RAG1 expression coincides with commitment. Thus, much T lineage gene expression precedes commitment and does not depend on it. Early in the course of commitment to the T lineage, thymocytes lose the ability to develop into B cells. To understand how this occurs, we also examined expression of well defined B lineage-specific genes. Although λ5 and Ig-α are not expressed, the μ0 and Iμ transcripts from the unrearranged IgH locus are expressed early, in distinct patterns, then repressed just before RAG1 expression. By contrast, RNA encoding the B cell receptor component Ig-β was found to be transcribed in all immature thymocyte subpopulations and throughout most thymocyte differentiation. Ig-β expression is down-regulated only during positive selection of CD4+CD8– cells. Thus several key participants in the B cell developmental program are expressed in non-B lineage-committed cells, and one is maintained even through commitment to an alternative lineage, and repressed only after extensive T lineage differentiation. The results show that transcriptional activation of “lymphocyte-specific” genes can occur in uncommitted precursors, and that T lineage commitment is a composite of distinct positive and negative regulatory events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIDS is characterized by a progressive decrease of CD4+ helper T lymphocytes. Destruction of these cells may involve programmed cell death, apoptosis. It has previously been reported that apoptosis can be induced even in noninfected cells by HIV-1 gp120 and anti-gp120 antibodies. HIV-1 gp120 binds to T cells via CD4 and the chemokine coreceptor CXCR4 (fusin/LESTR). Therefore, we investigated whether CD4 and CXCR4 mediate gp120-induced apoptosis. We used human peripheral blood lymphocytes, malignant T cells, and CD4/CXCR4 transfectants, and found cell death induced by both cell surface receptors, CD4 and CXCR4. The induced cell death was rapid, independent of known caspases, and lacking oligonucleosomal DNA fragmentation. In addition, the death signals were not propagated via p56lck and Giα. However, the cells showed chromatin condensation, morphological shrinkage, membrane inversion, and reduced mitochondrial transmembrane potential indicative of apoptosis. Significantly, apoptosis was exclusively observed in CD4+ but not in CD8+ T cells, and apoptosis triggered via CXCR4 was inhibited by stromal cell-derived factor-1, the natural CXCR4 ligand. Thus, this mechanism of apoptosis might contribute to T cell depletion in AIDS and might have major implications for therapeutic intervention.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Apolipoprotein E (apoE) is associated with several classes of plasma lipoproteins and mediates uptake of lipoproteins through its ability to interact with specific cell surface receptors. Besides its role in cardiovascular diseases, accumulating evidence has suggested that apoE could play a role in neurodegenerative diseases, such as Alzheimer disease. In vertebrates, apoA-I is the major protein of high-density lipoprotein. ApoA-I may play an important role in regulating the cholesterol content of peripheral tissues through the reverse cholesterol transport pathway. We have isolated cDNA clones that code for apoE and apoA-I from a zebrafish embryo library. Analysis of the deduced amino acid sequences showed the presence of a region enriched in basic amino acids in zebrafish apoE similar to the lipoprotein receptor-binding region of human apoE. We demonstrated by whole-mount in situ hybridization that apoE and apoA-I genes are highly expressed in the yolk syncytial layer, an extraembryonic structure implicated in embryonic and larval nutrition. ApoE transcripts were also observed in the deep cell layer during blastula stage, in numerous ectodermal derivatives after gastrulation, and after 3 days of development in a limited number of cells both in brain and in the eyes. Our data indicate that apoE can be found in a nonmammalian vertebrate and that the duplication events, from which apoE and apoA-I genes arose, occurred before the divergence of the tetrapod and teleost ancestors. Zebrafish can be used as a simple and useful model for studying the role of apolipoproteins in embryonic and larval nutrition and of apoE in brain morphogenesis and regeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human T lymphocytes have been shown to express inhibitory natural killer cell receptors (NKR), which can down-regulate T cell antigen receptor-mediated T cell function, including cytolytic activity. In the present study, we demonstrate that CD3+NKR+ cells can be identified in HIV-infected patients. HIV-specific cytolytic activity was analyzed in five patients in whom autologous lymphoblastoid B cell lines could be derived as a source of autologous target cells. Phytohemagglutinin-activated T cell populations that had been cultured in interleukin 2 displayed HIV-specific cytotoxic T lymphocyte (CTL) activity against HIV env, gag, pol, and nef in 3 of 5 patients. Addition of anti-NKR mAb of IgM isotype could increase the specific CTL activity. Moreover, in one additional patient, HIV-specific CTL activity was undetectable; however, after addition of anti-NKR mAb such CTL activity appeared de novo. Similar results were obtained by analysis of CD3+NKR+ clones derived from two patients. These data provide direct evidence that CD3+NKR+ cells may include antigen (HIV)-specific CTLs and that mAb-mediated masking of inhibitory NKR may revert the down-regulation of CTL function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerous studies have established that polyvalency is a critical feature of cell surface carbohydrate recognition. Nevertheless, carbohydrate–protein interactions are typically evaluated by using assays that focus on the behavior of monovalent carbohydrate ligands in solution. It has generally been assumed that the relative affinities of monovalent carbohydrate ligands in solution correlate with their polyvalent avidities. In this paper we show that carbohydrate ligands synthesized directly on TentaGel beads interact with carbohydrate-binding proteins in a polyvalent manner. The carbohydrate-derivatized beads can, therefore, be used as model systems for cell surfaces to evaluate polyvalent carbohydrate–protein interactions. By using a combinatorial approach to synthesize solid-phase libraries of polyvalent carbohydrates, one can rapidly address key issues in the area of cell surface carbohydrate recognition. For example, studies reported herein demonstrate that there is an unanticipated degree of specificity in recognition processes involving polyvalent carbohydrates. However, the correlation between polyvalent avidities and solution affinities is poor. Apparently, the presentation of carbohydrates on the polymer surface has a profound influence on the interaction of the ligand with the protein receptor. These findings have implications for how carbohydrates function as recognition signals in nature, as well as for how polyvalent carbohydrate–protein interactions should be studied.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The function of the immune system is highly dependent on cellular differentiation and clonal expansion of antigen-specific lymphocytes. However, little is known about mechanisms that may have evolved to protect replicative potential in actively dividing lymphocytes during immune differentiation and response. Here we report an analysis of telomere length and telomerase expression, factors implicated in the regulation of cellular replicative lifespan, in human B cell subsets. In contrast to previous observations, in which telomere shortening and concomitant loss of replicative potential occur in the process of somatic cell differentiation and cell division, it was found that germinal center (GC) B cells, a compartment characterized by extensive clonal expansion and selection, had significantly longer telomeric restriction fragments than those of precursor naive B cells. Furthermore, it was found that telomerase, a telomere-synthesizing enzyme, is expressed at high levels in GC B cells (at least 128-fold higher than those of naive and memory B cells), correlating with the long telomeres in this subset of B cells. Finally, both naive and memory B cells were capable of up-regulating telomerase activity in vitro in response to activation signals through the B cell antigen receptor in the presence of CD40 engagement and/or interleukin 4. These observations suggest that a novel process of telomere lengthening, possibly mediated by telomerase, functions in actively dividing GC B lymphocytes and may play a critical role in humoral immune response by maintaining the replicative potential of GC and descendant memory B cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lactacystin, a microbial metabolite that inhibits protease activity only in the proteasome, was used to study the role of the proteasome in the activation-induced cell death (AICD) of T cells. Lactacystin induces DNA fragmentation and apoptosis in a T cell hybridoma (DO.11.10) in a dose-dependent manner. Between 1 and 10 μM, the mildly cytotoxic lactacystin inhibited the AICD of DO.11.10 cells cultured in anti-CD3-coated wells. Degradation of IκBβ and the translocation of the NF-κB (p50/RelA) into the nucleus, which occurred at 1.5 hr after anti-CD3 activation, were inhibited by lactacystin. Lactacystin did not inhibit the expression of nuclear transcription factor Oct-1. The activation-induced expression of the immediate–early gene, Nur77, and the T cell death genes, CD95 (Fas) and CD95 ligand (FasL), were inhibited. Functional expression of FasL cytotoxicity and the increase of cell surface Fas were also inhibited. Lactacystin must be added within 2 hr of activation to efficiently block AICD. In addition, lactacystin failed to inhibit the killing of DO.11.10 by FasL-expressing allo-specific cytotoxic effector cells. These observations strongly suggest a direct link between the proteasome-dependent degradation of IκBβ and the AICD that occurs through activation of the FasL gene and up-regulation of the Fas gene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Class I MHC protein primarily presents endogenous antigen but also may present exogenous antigen. Here, we investigated the intracellular pathway of spontaneously internalized class I MHC protein by confocal microscopy. β2-microglobulin (β2m), labeled with a single fluorophore, was exchanged at the surface of B cell transfectants to specifically mark cell surface and endocytosed class I MHC protein. Intracellular β2m colocalized with fluorophore-conjugated transferrin, implying that class I MHC protein endocytosed into early endosomes. These endosomes containing fluorescent β2m were found close to or within the Golgi apparatus, marked by fluorescent ceramide. Even after 24 hr of incubation, very little fluorescent β2m was found in intracellular organelles stained by DiOC6, marking the endoplasmic reticulum, or fluorophore-conjugated low density lipoprotein, marking late endosomes and lysosomes. Fluorophore-conjugated superantigens (staphylococcal enterotoxin A and B), presumed to enter cells bound to class II MHC protein, also were found to endocytose into β2m-containing early endosomes. Staining with mAb and use of transfectants expressing MHC protein attached to green fluorescent protein confirmed the presence of intracellular compartments rich in both class I and II MHC protein and demonstrated that class I and II MHC protein also colocalize in discrete microdomains at the cell surface. These cell surface microdomains also contained transferrin receptor and often were juxtaposed to cholesterol-rich lipid rafts. Thus, class I and II MHC protein meet in microdomains of the plasma membrane and endocytose into early endosomes, where both may acquire and present exogenous antigen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

B cell development and humoral immune responses are controlled by signaling thresholds established through the B lymphocyte antigen receptor (BCR) complex. BCR signaling thresholds are differentially regulated by the CD22 and CD19 cell surface receptors in vivo. B cells from CD22-deficient mice exhibit characteristics of chronic stimulation and are hyper-responsive to BCR crosslinking with augmented intracellular Ca2+ responses. By contrast, B cells from CD19-deficient mice are hypo-responsive to transmembrane signals. To identify signaling molecules involved in the positive and negative regulation of signaling thresholds, the signal transduction pathways activated after BCR crosslinking were examined in CD22- and CD19-deficient B cells. These comparisons revealed that tyrosine phosphorylation of Vav protein was uniquely augmented after BCR or CD19 crosslinking in CD22-deficient B cells, yet was modest and transient after BCR crosslinking in CD19-deficient B cells. Ligation of CD19 and CD22 in vivo is likely to positively and negatively regulate BCR signaling, respectively, because CD19 crosslinking was more efficient than BCR crosslinking at inducing Vav phosphorylation. However, simultaneous crosslinking of CD19 with the BCR resulted in a substantial decrease in Vav phosphorylation when CD22 was expressed. Thus, the differential regulation of Vav tyrosine phosphorylation by CD19 and CD22 may provide a molecular mechanism for adjusting BCR signaling thresholds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

T cell antigen receptor (TCR) and pre-TCR complexes are composed of clonotypic heterodimers in association with dimers of signal transducing invariant subunits (CD3γ, -δ, -ɛ, and ζ). The role of individual invariant subunits in T cell development has been investigated by generating gene-specific mutations in mice. Mutation of CD3γ, -δ, or ζ results in an incomplete block in development, characterized by reduced numbers of mature T cells that express low levels of TCR. In contrast, mature T cells are absent from CD3ɛ−/− mice, and thymocyte development is arrested at the early CD4−CD8− stage. Although these results suggest that CD3ɛ is essential for pre-TCR and TCR expression/function, their interpretation is complicated by the fact that expression of the CD3γ and CD3δ genes also is reduced in CD3ɛ−/− mice. Thus, it is unclear whether the phenotype of CD3ɛ−/− mice reflects the collective effects of CD3γ, -δ, and -ɛ deficiency. By removing the selectable marker (PGK-NEO) from the targeted CD3ɛ gene via Cre/loxP-mediated recombination, we generated mice that lack CD3ɛ yet retain normal expression of the closely linked CD3γ and CD3δ genes. These (CD3ɛΔ/Δ) mice exhibited an early arrest in T cell development, similar to that of CD3ɛ−/− mice. Moreover, the developmental defect could be rescued by expression of a CD3ɛ transgene. These results identify an essential role for CD3ɛ in T cell development not shared by the CD3γ, CD3δ, or ζ-family proteins and provide further evidence that PGK-NEO can influence the expression of genes in its proximity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A monoclonal antibody specific for the empty conformation of class II MHC molecules revealed the presence of abundant empty molecules on the surface of spleen- and bone marrow-derived dendritic cells (DC) among various types of antigen-presenting cells. The empty class II MHC molecules are developmentally regulated and expressed predominantly on immature DC. They can capture peptide antigens directly from the extracellular medium and present bound peptides to antigen-specific T lymphocytes. The ability of the empty cell-surface class II MHC proteins to bind peptides and present them to T cells without intracellular processing can serve to extend the spectrum of antigens able to be presented by DC, consistent with their role as sentinels in the immune system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antigen recognition in the adaptive immune response by Ig and T-cell antigen receptors (TCRs) is effected through patterned differences in the peptide sequence in the V regions. V-region specificity forms through genetically programmed rearrangement of individual, diversified segmental elements in single somatic cells. Other Ig superfamily members, including natural killer receptors that mediate cell-surface recognition, do not undergo segmental reorganization, and contain type-2 C (C2) domains, which are structurally distinct from the C1 domains found in Ig and TCR. Immunoreceptor tyrosine-based inhibitory motifs that transduce negative regulatory signals through the cell membrane are found in certain natural killer and other cell surface inhibitory receptors, but not in Ig and TCR. In this study, we employ a genomic approach by using the pufferfish (Spheroides nephelus) to characterize a nonrearranging novel immune-type receptor gene family. Twenty-six different nonrearranging genes, which each encode highly diversified V as well as a V-like C2 extracellular domain, a transmembrane region, and in most instances, an immunoreceptor tyrosine-based inhibitory motif-containing cytoplasmic tail, are identified in an ≈113 kb P1 artificial chromosome insert. The presence in novel immune-type receptor genes of V regions that are related closely to those found in Ig and TCR as well as regulatory motifs that are characteristic of inhibitory receptors implies a heretofore unrecognized link between known receptors that mediate adaptive and innate immune functions.