127 resultados para S-locus F-box


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonhomologous integration vectors have been used to demonstrate the feasibility of insertional mutagenesis in haploid tachyzoites of the protozoan parasite Toxoplasma gondii. Mutant clones resistant to 5-fluorouracil were identified at a frequency of approximately 10(-6) (approximately 2 x 10(-5) of the stable transformants). Four independent mutants were isolated, all of which were shown to lack uracil phosphoribosyl-transferase (UPRT) activity and harbor transgenes integrated at closely linked loci, suggesting inactivation of the UPRT-encoding gene. Genomic DNA flanking the insertion point (along with the integrated vector) was readily recovered by bacterial transformation with restriction-digested, self-ligated total genomic DNA. Screening of genomic libraries with the recovered fragment identified sequences exhibiting high homology to known UPRT-encoding genes from other species, and cDNA clones were isolated that contain a single open reading frame predicted to encode the 244-amino acid enzyme. Homologous recombination vectors were exploited to create genetic knock-outs at the UPRT locus, which are deficient in enzyme activity but can be complemented by transient transformation with wild-type sequences--formally confirming identification of the functional UPRT gene. Mapping of transgene insertion points indicates that multiple independent mutants arose from integration at distinct sites within the UPRT gene, suggesting that nonhomologous integration is sufficiently random to permit tagging of the entire parasite genome in a single transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice thymectomized at three days of age (D3Tx) develop during adulthood a variety of organ-specific autoimmune diseases, including autoimmune ovarian dysgenesis (AOD). The phenotypic spectrum of AOD is characterized by the development of anti-ovarian autoantibodies, oophoritis, and atrophy. The D3Tx model of AOD is unique in that disease induction depends exclusively on perturbation of the normal developing immune system, is T-cell-mediated, and is strain specific. For example, D3Tx A/J mice are highly susceptible to AOD, whereas C57BL/6J mice are resistant. After D3Tx, self ovarian antigens, expressed at physiological levels, trigger an autoimmune response capable of eliciting disease. The D3Tx model provides, therefore, the opportunity to focus on the mechanisms of self-tolerance that are relevant to disease pathogenesis. Previous studies indicate that the principal mechanisms involved in AOD susceptibility are genetically controlled and govern developmental processes associated with the induction and maintenance of peripheral tolerance. We report here the mapping of the Aod1 locus to mouse chromosome 16 within a region encoding several loci of immunologic relevance, including scid, Igl1, VpreB, Igll, Igl1r, Mtv6 (Mls-3), Ly-7, Ifnar, and Ifgt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An n-allele model is developed for the FMR1 locus, which causes the fragile X syndrome, where n is the number of triplet repeats in the first exon. Frequencies in the general population and in index families are used to generate an n to n + delta transition matrix that predicts specific risks in satisfactory agreement with observation. However, until sequencing distinguishes between stable and unstable alleles with the same value of n, it is premature to infer whether allelic frequencies at the FMR1 locus are at equilibrium or, as some have suggested, are evolving toward higher frequencies of the pathogenic allele.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large recombinant inbred population of soybean has been characterized for 220 restriction fragment-length polymorphism (RFLP) markers. Values for agronomic traits also have been measured. Quantitative trait loci (QTL) for height, yield, and maturity were located by their linkage to RFLP markers. QTL controlling large amounts of trait variation were analyzed for the dependence of trait variation on particular alleles at a second locus by comparing cumulative distributions of the trait for each genotype (four genotypes per pair of loci). Interesting pairs of loci were analyzed statistically with maximum likelihood and Monte Carlo comparison of additive and epistatic models. For each locus affecting height, variation was conditional upon the presence of a particular allele at a second unlinked locus that itself explained little or no trait variation. The results show that interactions between QTL are frequent and control large effects. Interactions distinguished between different QTL in a single linkage group and between QTL that affect different traits closely linked to one RFLP marker--i.e., distinguished between pleiotropy and closely linked genes. The implications for the evolution of inbreeding plants and for the construction of agronomic breeding strategies are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Occupational exposure to benzene is known to cause leukemia, but the mechanism remains unclear. Unlike most other carcinogens, benzene and its metabolites are weakly or nonmutagenic in most simple gene mutation assays. Benzene and its metabolites do, however, produce chromosomal damage in a variety of systems. Here, we have used the glycophorin A (GPA) gene loss mutation assay to evaluate the nature of DNA damage produced by benzene in 24 workers heavily exposed to benzene and 23 matched control individuals in Shanghai, China. The GPA assay identifies stem cell or precursor erythroid cell mutations expressed in peripheral erythrocytes of MN-heterozygous subjects, distinguishing the NN and N phi mutant variants. A significant increase in the NN GPA variant cell frequency (Vf) was found in benzene-exposed workers as compared with unexposed control individuals (mean +/- SEM, 13.9 +/- 1.7 per million cells vs. 7.4 +/- 1.1 per million cells in control individuals; P = 0.0002). In contrast, no significant difference existed between the two groups for the N phi Vf (9.1 +/- 0.9 vs. 8.8 +/- 1.8 per million cells; P = 0.21). Further, lifetime cumulative occupational exposure to benzene was associated with the NN Vf (P = 0.005) but not with the N phi Vf (P = 0.31), suggesting that NN mutations occur in longer-lived bone marrow stem cells. NN variants result from loss of the GPA M allele and duplication of the N allele, presumably through recombination mechanisms, whereas NO variants arise from gene inactivation, presumably due to point mutations and deletions. Thus, these results suggest that benzene produces gene-duplicating mutations but does not produce gene-inactivating mutations at the GPA locus in bone marrow cells of humans exposed to high benzene levels. This finding is consistent with data on the genetic toxicology of benzene and its metabolites and adds further weight to the hypothesis that chromosome damage and mitotic recombination are important in benzene-induced leukemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The squamous cell carcinoma antigen (SCCA) is a member of the ovalbumin family of serine proteinase inhibitors (serpins). A neutral form of the protein is found in normal and some malignant squamous cells, whereas an acidic form is detected exclusively in tumor cells and in the circulation of patients with squamous cell tumors. In this report, we describe the cloning of the SCCA gene from normal genomic DNA. Surprisingly, two genes were found. They were tandemly arrayed and flanked by two other closely related serpins, plasminogen activator inhibitor type 2 (PAI2) and maspin at 18q21.3. The genomic structure of the two genes, SCCA1 and SCCA2, was highly conserved. The predicted amino acid sequences were 92% identical and suggested that the neutral form of the protein was encoded by SCCA1 and the acidic form was encoded by SCCA2. Further characterization of the region should determine whether the differential expression of the SCCA genes plays a causal role in development of more aggressive squamous cell carcinomas.