133 resultados para PALMITATE-INDUCED APOPTOSIS
Resumo:
Arachidonic acid (AA) metabolites derived from both cyclooxygenase (COX) and lipoxygenase (LOX) pathways transduce a variety of signals related to cell growth. Here, we report that the AA LOX pathway also functions as a critical regulator of cell survival and apoptosis. Rat Walker 256 (W256) carcinosarcoma cells express 12-LOX and synthesize 12(S)- and 15(S)-hydroxyeicosatetraenoic acids as their major LOX metabolites. W256 cells transfected with 12-LOX-specific antisense oligonucleotide or antisense oligonucleotides directed to conserved regions of LOXs underwent time- and dose-dependent apoptosis. Likewise, treatment of W256 cells with various LOX but not COX inhibitors induced apoptotic cell death, which could be partially inhibited by exogenous 12(S)- or 15(S)-hydroxyeicosatetraenoic acids. The W256 cell apoptosis induced by antisense oligos and LOX inhibitors was followed by a rapid downregulation of bcl-2 protein, a dramatic decrease in the bcl-2/bax ratio, and could be suppressed by bcl-2 overexpression. In contrast, p53, which is wild type in W256 cells, did not undergo alterations during apoptosis induction. The results suggest that the LOX pathway plays an important physiological role in regulating apoptosis.
Resumo:
To study the effect of apoptosis on gene amplification, we have constructed HeLa S3 cell lines in which the expression of bcl-2 (BCL2) can be controlled by tetracycline in the growth medium. Induction of Bcl-2 expression caused a temporary delay of apoptosis and resulted in roughly a 3-fold increase in the frequency of resistant colonies when cells were selected with trimetrexate. This resistance was due to amplification of the dihydrofolate reductase gene. Cells grown out of the pooled resistant colonies retained the same level of resistance to trimetrexate whether Bcl-2 was induced or repressed, consistent with the theory that Bcl-2 functions by facilitating gene amplification, rather than being the resistance mechanism per se. Pretreating cells with aphidicolin is another method to increase gene amplification frequency. When Bcl-2-expressing cells were pretreated with aphidicolin, the resulting increase in gene amplification frequency was approximately the product of the increases caused by aphidicolin pretreatment or Bcl-2 expression alone, indicating that Bcl-2 increases gene amplification through a mechanism independent of that of aphidicolin pretreatment. These results are consistent with the concept that gene amplification occurs at a higher frequency during drug-induced cell cycle perturbation. Bcl-2 evidently increases the number of selected amplified colonies by prolonging cell survival during the perturbation.
Resumo:
Fusarium moniliforme toxins (fumonisins) and Alternaria alternata lycopersici (AAL) toxins are members of a new class of sphinganine analog mycotoxins that occur widely in the food chain. These mycotoxins represent a serious threat to human and animal health, inducing both cell death and neoplastic events in mammals. The mechanisms by which this family of chemical congeners induce changes in cell homeostasis were investigated in African green monkey kidney cells (CV-1) by assessing the appearance of apoptosis, cell cycle regulation, and putative components of signal transduction pathways involved in apoptosis. Structurally, these mycotoxins resemble the sphingoid bases, sphingosine and sphinganine, that are reported to play critical roles in cell communication and signal transduction. The addition of fumonisin B1 or AAL toxin, TA, to CV-1 cells induced the stereotypical hallmarks of apoptosis, including the formation of DNA ladders, compaction of nuclear DNA, and the subsequent appearance of apoptotic bodies. Neither mycotoxin induced cell death, DNA ladders, or apoptotic bodies in CV-1 cells expressing simian virus 40 large T antigen (COS-7) at toxin concentrations that readily killed CV-1 cells. Fumonisin B1 induced cell cycle arrest in the G1 phase in CV-1 cells but not in COS-7 cells. AAL toxin TA did not arrest cell cycle progression in either cell line. The induction of apoptosis combined with the widespread presence of these compounds in food crops and animal feed identifies a previously unrecognized health risk to humans and livestock. These molecules also represent a new class of natural toxicants that can be used as model compounds to further characterize the molecular and biochemical pathways leading to apoptosis.
Resumo:
The basement membrane (BM) extracellular matrix induces differentiation and suppresses apoptosis in mammary epithelial cells, whereas cells lacking BM lose their differentiated phenotype and undergo apoptosis. Addition of purified BM components, which are known to induce beta-casein expression, did not prevent apoptosis, indicating that a more complex BM was necessary. A comparison of culture conditions where apoptosis would or would not occur allowed us to relate inhibition of apoptosis to a complete withdrawal from the cell cycle, which was observed only when cells acquired a three-dimensional alveolar structure in response to BM. In the absence of this morphology, both the GI cyclin kinase inhibitor p21/WAF-1 and positive proliferative signals including c-myc and cyclin DI were expressed and the retinoblastoma protein (Rb) continued to be hyperphosphorylated. When we overexpressed either c-myc in quiescent cells or p21 when cells were still cycling, apoptosis was induced. In the absence of three-dimensional alveolar structures, mammary epithelial cells secrete a number of factors including transforming growth factor alpha and tenascin, which when added exogenously to quiescent cells induced expression of c-myc and interleukin-beta1-converting enzyme (ICE) mRNA and led to apoptosis. These experiments demonstrate that a correct tissue architecture is crucial for long-range homeostasis, suppression of apoptosis, and maintenance of differentiated phenotype.
Resumo:
The mechanism by which tolerance is induced via systemic administration of high doses of aqueous antigen has been analyzed by using mice transgenic for a T-cell receptor specific for the influenza virus hemagglutinin (HA) peptide comprising amino acids 126-138. After intravenous injection of 750 (but not 75) micrograms of HA peptide, a state of hyporesponsiveness was rapidly induced. In the thymus, in situ apoptosis in the cortex and at the corticomedullary junction was responsible for a synchronous and massive deletion of CD4+ CD8+ thymocytes. In secondary lymphoid organs, HA-reactive T cells were initially activated but were hyporesponsive at the single cell level. After 3 days, however, those cells were rapidly deleted, at least partially, through an apoptotic process. Therefore, both thymic and peripheral apoptosis, in addition to T-cell receptor desensitization, contribute to high-dose tolerance.
Resumo:
The WAF1/CIP1 protein has been identified as a downstream mediator of the tumor suppressor p53 in regulating cell cycle progression through a G1-phase check-point. Recent work has implicated the functional status of p53 as a critical determinant in the apoptotic response of certain cell lines to DNA damaging agents. By using human T-cell leukemia virus type I-transformed lymphoid cell lines that differ in their level and function of wild-type p53, we investigated the induction of WAF1/CIP1 and apoptosis after exposure to Adriamycin, a genotoxic agent. We found that regardless of the p53 status in these cell lines, WAF1/CIP1 RNA was rapidly induced in response to Adriamycin treatment. An elevated level of WAF1/CIP1 protein was observed as well. Additionally, we demonstrated that apoptosis was induced in all cell lines analyzed despite some having functionally inactive p53 protein. Our data suggest that a p53-independent pathway may play a role in the apoptotic response observed in some cell lines after exposure to DNA damaging agents.
Resumo:
Staphylococcal enterotoxins (SE) stimulate T cells expressing the appropriate variable region beta chain of (V beta) T-cell receptors and have been implicated in the pathogenesis of several autoimmune diseases. Depending on costimulatory signals, SE induce either proliferation or anergy in T cells. In addition, SE can induce an interleukin-2 (IL-2) nonresponsive state and apoptosis. Here, we show that SE induce dynamic changes in the expression of and signal transduction through the IL-2 receptor (IL-2R) beta and gamma chains (IL-2R beta and IL-2R gamma) in human antigen-specific CD4+ T-cell lines. Thus, after 4 hr of exposure to SEA and SEB, the expression of IL-2R beta was down-regulated, IL-2R gamma was slightly up-regulated, while IL-2R alpha remained largely unaffected. The changes in the composition of IL-2Rs were accompanied by inhibition of IL-2-induced tyrosine phosphorylation of the Janus protein-tyrosine kinase 3 (Jak3) and signal transducers and activators of transcription called Stat3 and Stat5. In parallel experiments, IL-2-driven proliferation was inhibited significantly. After 16 hr of exposure to SE, the expression of IL-2R beta remained low, while that of IL2R alpha and IL2R gamma was further up-regulated, and ligand-induced tyrosine phosphorylation of Jak3 and Stat proteins was partly normalized. Yet, IL-2-driven proliferation remained profoundly inhibited, suggesting that signaling events other than Jak3/Stat activation had also been changed following SE stimulation. In conclusion, our data suggest that SE can modulate IL-2R expression and signal transduction involving the Jak/Stat pathway in CD4+ T-cell lines.
Resumo:
We analyzed the developmental regulation and role of the neurotrophins during metanephric kidney morphogenesis. RNase protection assay revealed the presence of nerve growth factor, neurotrophin 3 (NT-3), and brain-derived neurotrophic factor mRNAs and the regulation of their expression during embryonic development of rat metanephros. NT-3 induced differentiation (neurite outgrowth) and survival (inhibition of apoptosis) of the neuronal precursors in cultured nephrogenic mesenchymes and neuronal differentiation in cultured whole kidneys, whereas NT-4/5, brain-derived neurotrophic factor, and nerve growth factor were without effect. The neurotrophins did not trigger tubular differentiation of isolated nephrogenic cells, which underwent apoptosis when cultured with or without the neurotrophins. NT-3 is thus an inducer of differentiation and a survival factor for renal neuronal cells, but none of the neurotrophins is a morphogen in kidney tubule induction.
Resumo:
We recently isolated human cDNA fragments that render MCF-7 breast cancer cells resistant to cell death caused by Pseudomonas exotoxin, Pseudomonas exotoxin-derived immunotoxins, diphtheria toxin, and tumor necrosis factor. We report here that one of these fragments is an antisense fragment of a gene homologous to the essential yeast chromosome segregation gene CSE1. Cloning and analysis of the full-length cDNA of the human CSE1 homologue, which we name CAS for cellular apoptosis susceptibility gene, reveals a protein coding region with similar length (971 amino acids for CAS, 960 amino acids for CSE1) and 59% overall protein homology to the yeast CSE1 protein. The conservation of this gene indicates it has an important function in human cells consistent with the essential role of CSE1 in yeast. CAS is highly expressed in human tumor cell lines and in human testis and fetal liver, tissues that contain actively dividing cells. Furthermore, CAS expression increases when resting human fibroblasts are induced to proliferate and decreases when they are growth-arrested. Thus, CAS appears to play an important role in both toxin and tumor necrosis factor-mediated cell death, as well as in cell proliferation.
Resumo:
DNA-damaging agents induce accumulation of the tumor suppressor and G1 checkpoint protein p53, leading cells to either growth arrest in G1 or apoptosis (programmed cell death). The p53-dependent G1 arrest involves induction of p21 (also called WAF1/CIP1/SDI1), which prevents cyclin kinase-mediated phosphorylation of retinoblastoma protein (RB). Recent studies suggest a p53-independent G1 checkpoint as well; however, little is known about its molecular mechanisms. We report that induction of a protein-serine/threonine phosphatase activity by DNA damage signals is at least one of the mechanisms responsible for p53-independent, RB-mediated G1 arrest and consequent apoptosis. When two p53-null human leukemic cell lines (HL-60 and U-937) were treated with a variety of anticancer agents, RB became hypophosphorylated, accompanied with G1 arrest. This was followed immediately (in less than 30 min) by apoptosis, as determined by the accumulation of pre-G1 apoptotic cells and the internucleosomal fragmentation of DNA. Addition of calyculin A or okadaic acid (specific serine/threonine phosphatase inhibitors) or zinc chloride (apoptosis inhibitor) prevented the G1 arrest- and apoptosis-specific RB dephosphorylation. The levels of cyclin E- and cyclin A-associated kinase activities remained high during RB dephosphorylation, supporting the involvement of a chemotherapy-induced serine/threonine phosphatase(s) rather than p21. Furthermore, the induced phosphatase activity coimmunoprecipitated with the hyperphosphorylated RB and was active in a cell-free system that reproduced the growth arrest- and apoptosis-specific RB dephosphorylation, which was inhibitable by calyculin A but not zinc. We propose that the RB phosphatase(s) might be one of the p53-independent G1 checkpoint regulators.
Resumo:
Hypoxia/reoxygenation is an important cause of tissue injury in a variety of organs and is classically considered to be a necrotic form of cell death. We examined the role of endonuclease activation, considered a characteristic feature of apoptosis, in hypoxia/reoxygenation injury. We demonstrate that subjecting rat renal proximal tubules to hypoxia/reoxygenation results in DNA strand breaks and DNA fragmentation (both by an in situ technique and by agarose gel electrophoresis), which precedes cell death. Hypoxia/reoxygenation resulted in an increase in DNA-degrading activity with an apparent molecular mass of 15 kDa on a substrate gel. This DNA-degrading activity was entirely calcium dependent and was blocked by the endonuclease inhibitor aurintricarboxylic acid. The protein extract from tubules subjected to hypoxia/reoxygenation cleaved intact nuclear DNA obtained from normal proximal tubules into small fragments, which further supports the presence of endonuclease activity. Despite unequivocal evidence of endonuclease activation, the morphologic features of apoptosis, including chromatin condensation, were not observed by light and electron microscopy. Endonuclease inhibitors, aurintricarboxylic acid and Evans blue, provided complete protection against DNA damage induced by hypoxia/reoxygenation but only partial protection against cell death. Taken together, our data provide strong evidence for a role of endonuclease activation as an early event, which is entirely responsible for the DNA damage and partially responsible for the cell death that occurs during hypoxia/reoxygenation injury. Our data also indicate that in hypoxia/reoxygenation injury endonuclease activation and DNA fragmentation occur without the morphological features of apoptosis.
Resumo:
Chronic myelogenous leukemia evolves in two clinically distinct stages: a chronic and a blast crisis phase. The molecular changes associated with chronic phase to blast crisis transition are largely unknown. We have identified a cDNA clone, DR-nm23, differentially expressed in a blast-crisis cDNA library, which has approximately 70% sequence similarity to the putative metastatic suppressor genes, nm23-H1 and nm23-H2. The deduced amino acid sequence similarity to the proteins encoded by these two latter genes is approximately 65% and includes domains and amino acid residues (the leucine zipper-like and the RGD domain, a serine and a histidine residue in the NH2- and in the COOH-terminal portion of the protein, respectively) postulated to be important for nm23 function. DR-nm23 mRNA is preferentially expressed at early stages of myeloid differentiation of highly purified CD34+ cells. Its constitutive expression in the myeloid precursor 32Dc13 cell line, which is growth-factor dependent for both proliferation and differentiation, results in inhibition of granulocytic differentiation induced by granulocyte colony-stimulating factor and causes apoptotic cell death. These results are consistent with a role for DR-nm23 in normal hematopoiesis and raise the possibility that its overexpression contributes to differentiation arrest, a feature of blastic transformation in chronic myelogenous leukemia.
Resumo:
Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+:poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-dependent eukaryotic DNA-binding protein that specifically recognizes DNA strand breaks produced by various genotoxic agents. To study the biological function of this enzyme, we have established stable HeLa cell lines that constitutively produce the 46-kDa DNA-binding domain of human PARP (PARP-DBD), leading to the trans-dominant inhibition of resident PARP activity. As a control, a cell line was constructed, producing a point-mutated version of the DBD, which has no affinity for DNA in vitro. Expression of the PARP-DBD had only a slight effect on undamaged cells but had drastic consequences for cells treated with genotoxic agents. Exposure of cell lines expressing the wild-type (wt) or the mutated PARP-DBD, with low doses of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) resulted in an increase in their doubling time, a G2 + M accumulation, and a marked reduction in cell survival. However, UVC irradiation had no preferential effect on the cell growth or viability of cell lines expressing the PARP-DBD. These PARP-DBD-expressing cells treated with MNNG presented the characteristic nucleosomal DNA ladder, one of the hallmarks of cell death by apoptosis. Moreover, these cells exhibited chromosomal instability as demonstrated by higher frequencies of both spontaneous and MNNG-induced sister chromatid exchanges. Surprisingly, the line producing the mutated DBD had the same behavior as those producing the wt DBD, indicating that the mechanism of action of the dominant-negative mutant involves more than its DNA-binding function. Altogether, these results strongly suggest that PARP is an element of the G2 checkpoint in mammalian cells.