154 resultados para Luteinizing hormone receptor
Resumo:
Binding of a hormone agonist to a steroid receptor leads to the dissociation of heat shock proteins, dimerization, specific DNA binding, and target gene activation. Although the progesterone antagonist RU486 can induce most of these events, it fails to activate human progesterone receptor (hPR)-dependent transcription. We have previously demonstrated that a conformational change is a key event leading to receptor activation. The major conformational distinction between hormone- and antihormone-bound receptors occurs within the C-terminal portion of the molecule. Furthermore, hPR mutants lacking the C terminus become transcriptionally active in the presence of RU486. These results suggest that the C terminus contains a repressor domain that inhibits the transcriptional activity of the RU486-bound hPR. In this study, we have defined a 12 amino acid (12AA) region in the C terminus of hPR that is necessary and sufficient for the repressor function when fused to the C-terminal truncated hPR or to the GAL4 DNA-binding domain. Mutations in the 12AA domain (aa 917-928) generate an hPR that is active in the presence of RU486. Furthermore, overexpression of the 12AA peptide activates the RU486-bound wild-type hPR without affecting progesterone-dependent activation. These results suggest that association of the 12AA repressor region with a corepressor might inactivate hPR activity when it is bound to RU486. We propose that binding of a hormone agonist to the receptor changes its conformation in the ligand-binding domain so that association with coactivator is promoted and activation of target gene occurs.
Resumo:
Environmental perturbations that increase plasma thyroid hormone (T3) concentrations also profoundly affect female reproductive behavior and physiology. We explored whether these effects were mediated by interactions between T3 receptor (TR) and estrogen receptor (ER). This hypothesis was of interest because the half-site of a consensus T3 response element DNA sequence is identical to an ER response element (ERE), and TRs bind to a consensus ERE. Molecular data presented in the accompanying paper [Zhu, Y.-S., Yen, P.M., Chin, W.W.& Pfaff, D.W. (1996) Proc. Natl. Acad. Sci. USA 93, 12587-12592] demonstrate that TRs and ERs are both present in rat hypothalamic nuclear extracts and that both can bind to the promoter the hypothalamic gene preproenkephalin and that interations between liganded TRs and ERs affect preproenkephalin transcription. In this paper, we show that molecular interactions between TRs and ERs are sufficient to mediate environmental effects on estrogen-controlled reproductive behavior. Ovariectomized (OVX) rats treated with high doses of T3 showed significantly lower levels of lordosis behavior in response to estradiol benzoate (EB) compared with OVX females treated with EB alone. Conversely, thyroidectomized/OVX females treated with EB showed significantly greater levels of lordosis behavior compared with OVX females treated with EB, showing the effect of endogenous T3. Thyroid hormone interference with EB-induced behavior could not be explained by a reduction in plasma E2 concentrations or by a general reduction in responsiveness of EB-sensitive tissues. Moreover, numbers of hypothalamic ER-immunoreactive cells increased dramatically following T3 treatment. These data suggest that T3 may reduce EB-dependent sexual behavior through interactions between TR and ER in the nuclei of behaviorally relevant hypothalamic neurons, envisioning for the first time a functional consequence of interactions between two nuclear hormone receptors in brain. These results also open up the possibility of molecular interactions on DNA encoding environmental signals, a new field for the study of neuronal integration.
Resumo:
Estrogen receptor (ER) and thyroid hormone receptors (TRs) are ligand-dependent nuclear transcription factors that can bind to an identical half-site, AGGTCA, of their cognate hormone response elements. By in vitro transfection analysis in CV-1 cells, we show that estrogen induction of chloramphenicol acetyltransferase (CAT) activity in a construct containing a CAT reporter gene under the control of a minimal thymidine kinase (tk) promoter and a copy of the consensus ER response element was attenuated by cotransfection of TR alpha 1 plus triiodothyronine treatment. This inhibitory effect of TR was ligand-dependent and isoform-specific. Neither TR beta 1 nor TR beta 2 cotransfection inhibited estrogen-induced CAT activity, although both TR alpha and TR beta can bind to a consensus ER response element. Furthermore, cotransfection of a mutated TR alpha 1 that lacks binding to the AGGTCA sequence also inhibited the estrogen effect. Thus, the repression of estrogen action by liganded TR alpha 1 may involve protein-protein interactions although competition of ER and TR at the DNA level cannot be excluded. A similar inhibitory effect of liganded TR alpha 1 on estrogen induction of CAT activity was observed in a construct containing the preproenkephalin (PPE) promoter. A study in hypophysectomized female rats demonstrated that the estrogen-induced increase in PPE mRNA levels in the ventromedial hypothalamus was diminished by coadministration of triiodothyronine. These results suggest that ER and TR may interact to modulate estrogen-sensitive gene expression, such as for PPE, in the hypothalamus.
Resumo:
The estrogen receptor (ER) is a ligand-dependent transcription factor that regulates expression of target genes in response to estrogen in concert with other cellular signaling pathways. This suggests that the mechanism by which ER transmits an activating signal to the general transcription machinery may include factors that integrate these diverse signals. We have previously characterized the estrogen receptor-associated protein, ERAP160, as a factor that complexes with ER in an agonist-dependent manner. We have now found that the transcriptional coactivator p300 associates with agonist bound ER and augments ligand-dependent activation by ER. Our studies show that an ER coactivator complex involves a direct hormone-dependent interaction between ER and ERAP160, resulting in the recruitment of p300. In addition, antibodies directed against the cloned steroid receptor coactivator 1 (SRC1) recognize ERAP160. The known role of p300 in multiple signal transduction pathways, including those involving the second messenger cAMP, suggests p300 functions as a point of integration between ER and these other pathways.
Resumo:
The signaling pathways associated with estrogen-induced proliferation of epithelial cells in the reproductive tract have not been defined. To identify receptor tyrosine kinases that are activated in vivo by 17 beta-estradiol (E2), uteri from ovariectomized mice were examined for enhanced tyrosine phosphorylation of various receptors and a receptor substrate following treatment with this hormone. Within 4 hr after hormone exposure, extracts showed increased phosphotyrosine (P-Tyr) immunoreactivity at several bands, including 170- and 180-kDa; these bands were still apparent at 24 hr after E2. Analysis of immunoprecipitates from uterine extracts revealed that E2 enhanced tyrosine phosphorylation of the insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor substrate-1 (IRS-1) by 6 hr. Comparison of supernatants from IRS-1 and control rabbit IgG immunoprecipitates indicated that the 170-kDa P-Tyr band in extracts was equivalent to IRS-1. The receptors for epidermal growth factor, platelet-derived growth factor, and basic fibroblast growth factor did not exhibit an E2-induced increase in P-Tyr content. The nonestrogenic steroid hormones examined did not stimulate the P-Tyr content of IGF-1R or IRS-1. Immunolocalization of P-Tyr and IRS-1 revealed strong reactivity in the epithelial layer of the uterus from E2-treated mice, suggesting that the majority of P-Tyr bands observed in immunoblots originate in the epithelium. Since hormonal activation of IRS-1 is epithelial, estrogen-specific, and initiated before maximal DNA synthesis occurs following treatment with hormone, this protein, as part of the IGF-1R pathway, may be important in mediating estrogen-stimulated proliferation in the uterus.
Resumo:
Graves disease is an autoimmune thyroid disease characterized by the presence of antibodies against the thyrotropin receptor (TSHR), which stimulate the thyroid to cause hyperthyroidism and/or goiter. By immunizing mice with fibroblasts transfected with both the human TSHR and a major histocompatibility complex class II molecule, but not by either alone, we have induced immune hyperthyroidism that has the major humoral and histological features of Graves disease: stimulating TSHR antibodies, thyrotropin binding inhibiting immunoglobulins, which are different from the stimulating TSHR antibodies, increased thyroid hormone levels, thyroid enlargement, thyrocyte hypercellularity, and thyrocyte intrusion into the follicular lumen. The results suggest that the aberrant expression of major histocompatibility complex class II molecules on cells that express a native form of the TSHR can result in the induction of functional anti-TSHR antibodies that stimulate the thyroid. They additionally suggest that the acquisition of antigen-presenting ability on a target cell containing the TSHR can activate T and B cells normally present in an animal and induce a disease with the major features of autoimmune Graves.
Resumo:
Parathyroid hormone-related peptide (PTHrP) was initially identified as a product of malignant tumors that mediates paraneoplastic hypercalcemia. It is now known that the parathyroid hormone (PTH) and PTHrP genes are evolutionarily related and that the products of these two genes share a common receptor, the PTH/PTHrP receptor. PTHrP and the PTH/PTHrP receptor are widely expressed in both adult and fetal tissues, and recent gene-targeting and disruption experiments have implicated PTHrP as a developmental regulatory molecule. Apparent PTHrP functions include the regulation of endochondral bone development, of hair follicle formation, and of branching morphogenesis in the breast. Herein, we report that overexpression of PTHrP in chondrocytes using the mouse type II collagen promoter induces a novel form of chondrodysplasia characterized by short-limbed dwarfism and a delay in endochondral ossification. This features a delay in chondrocyte differentiation and in bone collar formation and is sufficiently marked that the mice are born with a cartilaginous endochondral skeleton. In addition to the delay, chondrocytes in the transgenic mice initially become hypertrophic at the periphery of the developing long bones rather than in the middle, leading to a seeming reversal in the pattern of chondrocyte differentiation and ossification. By 7 weeks, the delays in chondrocyte differentiation and ossification have largely corrected, leaving foreshortened and misshapen but histologically near-normal bones. These findings confirm a role for PTHrP as an inhibitor of the program of chondrocyte differentiation. PTHrP may function in this regard to maintain the stepwise differentiation of chondrocytes that initiates endochondral ossification in the midsection of endochondral bones early in development and that also permits linear growth at the growth plate later in development.
Resumo:
The interaction of the hormone erythropoietin and its receptor (EpoR) is though to be required for normal hematopoiesis. To define the role of EpoR in this process, the murine EpoR was disrupted by homologous recombination. Mice lacking the EpoR died in utero at embryonic day 11-12.5 with severe anemia. Embryonic erythropoiesis was markedly diminished, while fetal liver hematopoiesis was blocked at the proerythroblast stage. Other cell types known to express EpoR, including megakaryocytes, mast, and neural cells were morphologically normal. Reverse transcription-coupled PCR analysis of RNA from embryonic yolk sac, peripheral blood, and fetal liver demonstrated near normal transcripts levels for EKLF, thrombopoietin (Tpo), c-MPL, GATA-1, GATA-2, and alpha- and embryonic beta H1-globin but non for adult beta maj-globin. While colony-forming unit-erythroid (CFU-E) and burst-forming unit-erythroid (BFU-E) colonies were not present in cultures derived from EpoR-/- liver or yolk sac cells, hemoglobin-containing BFU-E colonies were detected in cultures treated with recombinant Tpo and Kit ligand or with Tpo and interleukin 3 and 11. Rescued BFU-E colonies expressed adult beta-globin and c-MPL and appeared morphologically normal. Thus, erythroid progenitors are formed in vivo in mice lacking the EpoR, and our studies demonstrate that a signal transmitted through the Tpo receptor c-MPL stimulates proliferation and terminal differentiation of these progenitors in vitro.
Resumo:
Previously, we have shown that agonists and antagonists interact with distinct, though overlapping regions within the human progesterone receptor (hPR) resulting in the formation of structurally different complexes. Thus, a link was established between the structure of a ligand-receptor complex and biological activity. In this study, we have utilized a series of in vitro assays with which to study hPR pharmacology and have identified a third class of hPR ligands that induce a receptor conformation which is distinct from that induced by agonists or antagonists. Importantly, when assayed on PR-responsive target genes these compounds were shown to exhibit partial agonist activity; an activity that was influenced by cell context. Thus, as has been shown previously for estrogen receptor, the overall structure of the ligand-receptor complex is influenced by the nature of the ligand. It appears, therefore, that the observed differences in the activity of some PR and estrogen receptor ligands reflect the ability of the cellular transcription machinery to discriminate between the structurally different complexes that result following ligand interaction. These data support the increasingly favored hypothesis that different ligands can interact with different regions within the hormone binding domains of steroid hormone receptors resulting in different biologies.
Resumo:
Transcriptional repression represents an important component in the regulation of cell differentiation and oncogenesis mediated by nuclear hormone receptors. Hormones act to relieve repression, thus allowing receptors to function as transcriptional activators. The transcriptional corepressor SMRT was identified as a silencing mediator for retinoid and thyroid hormone receptors. SMRT is highly related to another corepressor, N-CoR, suggesting the existence of a new family of receptor-interacting proteins. We demonstrate that SMRT is a ubiquitous nuclear protein that interacts with unliganded receptor heterodimers in mammalian cells. Furthermore, expression of the receptor-interacting domain of SMRT acts as an antirepressor, suggesting the potential importance of splicing variants as modulators of thyroid hormone and retinoic acid signaling.
Resumo:
We have cloned a novel member of the nuclear receptor superfamily. The cDNA of clone 29 was isolated from a rat prostate cDNA library and it encodes a protein of 485 amino acid residues with a calculated molecular weight of 54.2 kDa. Clone 29 protein is unique in that it is highly homologous to the rat estrogen receptor (ER) protein, particularly in the DNA-binding domain (95%) and in the C-terminal ligand-binding domain (55%). Expression of clone 29 in rat tissues was investigated by in situ hybridization and prominent expression was found in prostate and ovary. In the prostate clone 29 is expressed in the epithelial cells of the secretory alveoli, whereas in the ovary the granuloma cells in primary, secondary, and mature follicles showed expression of clone 29. Saturation ligand-binding analysis of in vitro synthesized clone 29 protein revealed a single binding component for 17beta-estradiol (E2) with high affinity (Kd= 0.6 nM). In ligand-competition experiments the binding affinity decreased in the order E2 > diethylstilbestrol > estriol > estrone > 5alpha-androstane-3beta,17beta-diol >> testosterone = progesterone = corticosterone = 5alpha-androstane-3alpha,17beta-diol. In cotransfection experiments of Chinese hamster ovary cells with a clone 29 expression vector and an estrogen-regulated reporter gene, maximal stimulation (about 3-fold) of reporter gene activity was found during incubation with 10 nM of E2. Neither progesterone, testosterone, dexamethasone, thyroid hormone, all-trans-retinoic acid, nor 5alpha-androstane-3alpha,I7beta-diol could stimulate reporter gene activity, whereas estrone and 5alpha-androstane-3beta,17beta-diol did. We conclude that clone 29 cDNA encodes a novel rat ER, which we suggest be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.
Resumo:
Elements responsible for dexamethasone responsiveness of CYP3A23, a major glucocorticoid-inducible member of the CYP3A gene family, have been identified. DNase I footprint analysis of the proximal promoter region revealed three protected sites (sites A, B, and C) within the sequence defined by -167 to -60. Mutational analysis demonstrated that both sites B and C were necessary for maximum glucocorticoid responsiveness and functioned in a cooperative manner. Interestingly, neither site contained a glucocorticoid responsive element. Embedded in site C was an imperfect direct repeat (5'-AACTCAAAGGAGGTCA-3'), showing homology to an AGGTCA steroid receptor motif, typically recognized by the estrogen receptor family, while site B contained an ATGAACT direct repeat; these core sequences were designated dexamethasone response elements 1 and 2 (DexRE-1 and -2), respectively. Neither element has previously been associated with a glucocorticoid-activated transcriptional response. Conversion of the DexRE-1 to either a perfect thyroid hormone or vitamin D3 responsive element further enhanced induction by dexamethasone. Gel-shift analysis demonstrated that glucocorticoid receptor did not associate with either DexRE-1 or -2; hence, glucocorticoid receptor does not directly mediate glucocorticoid induction of CYP3A23. These unusual features suggest an alternate pathway through which glucocorticoids exert their effects.
Resumo:
A highly fluorescent mutant form of the green fluorescent protein (GFP) has been fused to the rat glucocorticoid receptor (GR). When GFP-GR is expressed in living mouse cells, it is competent for normal transactivation of the GR-responsive mouse mammary tumor virus promoter. The unliganded GFP-GR resides in the cytoplasm and translocates to the nucleus in a hormone-dependent manner with ligand specificity similar to that of the native GR receptor. Due to the resistance of the mutant GFP to photobleaching, the translocation process can be studied by time-lapse video microscopy. Confocal laser scanning microscopy showed nuclear accumulation in a discrete series of foci, excluding nucleoli. Complete receptor translocation is induced with RU486 (a ligand with little agonist activity), although concentration into nuclear foci is not observed. This reproducible pattern of transactivation-competent GR reveals a previously undescribed intranuclear architecture of GR target sites.
Resumo:
The yeast two-hybrid system was used to isolate a clone from a 17-day-old mouse embryo cDNA library that codes for a novel 812-aa long protein fragment, glucocorticoid receptor-interacting protein 1 (GRIP1), that can interact with the hormone binding domain (HBD) of the glucocorticoid receptor. In the yeast two-hybrid system and in vitro, GRIP1 interacted with the HBDs of the glucocorticoid, estrogen, and androgen receptors in a hormone-regulated manner. When fused to the DNA binding domain of a heterologous protein, the GRIP1 fragment activated a reporter gene containing a suitable enhancer site in yeast cells and in mammalian cells, indicating that GRIP1 contains a transcriptional activation domain. Overexpression of the GRIP1 fragment in mammalian cells interfered with hormone-regulated expression of mouse mammary tumor virus-chloramphenicol acetyltransferase gene and constitutive expression of cytomegalovirus-beta-galactosidase reporter gene, but not constitutive expression from a tRNA gene promoter. This selective squelching activity suggests that GRIM can interact with an essential component of the RNA polymerase II transcription machinery. Finally, while a steroid receptor HBD fused with a GAL4 DNA binding domain did not, by itself, activate transcription of a reporter gene in yeast, coexpression of this fusion protein with GRIP1 strongly activated the reporter gene. Thus, in yeast, GRIP1 can serve as a coactivator, potentiating the transactivation functions in steroid receptor HBDs, possibly by acting as a bridge between HBDs of the receptors and the basal transcription machinery.
Modulation of the transcriptional activity of thyroid hormone receptors by the tumor suppressor p53.
Resumo:
Thyroid hormone nuclear receptors (TRs) are ligand-dependent transcriptional factors that regulate growth, differentiation, and development. The molecular mechanisms by which TRs mediate these effects are unclear. One prevailing hypothesis suggests that TRs may cooperate with other transcriptional factors to mediate their biological effects. In this study, we tested this hypothesis by examining whether the activity of TRs is modulated by the tumor suppressor p53. p53 is a nuclear protein that regulates gene expression via sequence-specific DNA binding and/or direct protein-protein interaction. We found that the human TR subtype beta 1 (h-TR beta 1) physically interacted with p53 via its DNA binding domain. As a result of this physical interaction, binding of h-TR beta 1 to its hormone response elements either as homodimer or as a heterodimer with the retinoic X receptor was inhibited by p53 in a concentration-dependent manner. In transfected cells, wild-type p53 repressed the hormone-dependent transcriptional activation of h-TR beta 1. In contrast, mutant p53 either had no effect or activated the transcriptional activity of h-TR beta 1 depending on the type of hormone response elements. These results indicate the gene regulating activity of TRs was modulated by p53, suggesting that the cross talk between these two transcriptional factors may play an important role in the biology of normal and cancer cells.