168 resultados para Lethal mutation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha-factor pheromone receptor stimulates MATa yeast cells to undergo conjugation. The receptor contains seven transmembrane domains that function in ligand binding and in transducing a signal to the cytoplasmic receptor sequences to mediate G protein activation. A genetic screen was used to isolate receptor mutations that constitutively signal in the absence of alpha-factor. The Pro-258-->Leu (P258L) mutation caused constitutive receptor signaling that was equivalent to about 45% of the maximum level observed in wild-type cells stimulated with alpha-factor. Mutations of both Pro-258 and the adjacent Ser-259 to Leu increased constitutive signaling to > or = 90% of the maximum level. Since Pro-258 occurs in the central portion of transmembrane domain 6, and since proline residues are expected to cause a kink in alpha-helical domains, the P258L mutation is predicted to alter the structure of transmembrane domain 6. The P258L mutation did not result in a global distortion of receptor structure because alpha-factor bound to the mutant receptors with high affinity and induced even higher levels of signaling. These results suggest that sequences surrounding Pro-258 may be involved in ligand activation of the receptor. Conformational changes in transmembrane domain 6 may effect a change in the adjacent sequences in the third intracellular loop that are thought to function in G protein activation. Greater than 90% of all G protein-coupled receptors contain a proline residue at a similar position in transmembrane domain 6, suggesting that this aspect of receptor activation may be conserved in other receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The involvement of a conserved serine (Ser196 at the mu-, Ser177 at the delta-, and Ser187 at the kappa-opioid receptor) in receptor activation is demonstrated by site-directed mutagenesis. It was initially observed during our functional screening of a mu/delta-opioid chimeric receptor, mu delta2, that classical opioid antagonists such as naloxone, naltrexone, naltriben, and H-Tyr-Tic[psi,CH2NH]Phe-Phe-OH (TIPPpsi; Tic = 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) could inhibit forskolin-stimulated adenylyl cyclase activity in CHO cells stably expressing the chimeric receptor. Antagonists also activated the G protein-coupled inward rectifying potassium channel (GIRK1) in Xenopus oocytes coexpressing the mu delta2 opioid receptor and the GIRK1 channel. By sequence analysis and back mutation, it was determined that the observed antagonist activity was due to the mutation of a conserved serine to leucine in the fourth transmembrane domain (S196L). The importance of this serine was further demonstrated by analogous mutations created in the mu-opioid receptor (MORS196L) and delta-opioid receptor (DORS177L), in which classical opioid antagonists could inhibit forskolin-stimulated adenylyl cyclase activity in CHO cells stably expressing either MORS196L or DORS177L. Again, antagonists could activate the GIRK1 channel coexpressed with either MORS196L or DORS177L in Xenopus oocytes. These data taken together suggest a crucial role for this serine residue in opioid receptor activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3' to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chédiak-Higashi syndrome in man and the beige mutation of mice are phenotypically similar disorders that have profound effects upon lysosome and melanosome morphology and function. We isolated two murine yeast artificial chromosomes (YACs) that, when introduced into beige mouse fibroblasts, complement the beige mutation. The complementing YACs exist as extrachromosomal elements that are amplified in high concentrations of G418. When YAC-complemented beige cells were fused to human Chédiak-Higashi syndrome or Aleutian mink fibroblasts, complementation of the mutant phenotype also occurred. These results localize the beige gene to a 500-kb interval and demonstrate that the same or homologous genes are defective in mice, minks, and humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leukotriene A4 (LTA4) hydrolase [(7E,9E,11Z,14Z)-(5S,6S)-5,6-epoxyicosa-7, 9,11,14-tetraenoate hydrolase; EC 3.3.2.6] is a bifunctional zinc metalloenzyme that catalyzes the final step in the biosynthesis of the potent chemotactic agent leukotriene B4 (LTB4). LTA4 hydrolase/aminopeptidase is suicide inactivated during catalysis via an apparently mechanism-based irreversible binding of LTA4 to the protein in a 1:1 stoichiometry. Previously, we have identified a henicosapeptide, encompassing residues Leu-365 to Lys-385 in human LTA4 hydrolase, which contains a site involved in the covalent binding of LTA4 to the native enzyme. To investigate the role of Tyr-378, a potential candidate for this binding site, we exchanged Tyr for Phe or Gln in two separate mutants. In addition, each of two adjacent and potentially reactive residues, Ser-379 and Ser-380, were exchanged for Ala. The mutated enzymes were expressed as (His)6-tagged fusion proteins in Escherichia coli, purified to apparent homogeneity, and characterized. Enzyme activity determinations and differential peptide mapping, before and after repeated exposure to LTA4, revealed that wild-type enzyme and the mutants [S379A] and [S380A]LTA4hydrolase were equally susceptible to suicide inactivation whereas the mutants in position 378 were no longer inactivated or covalently modified by LTA4. Furthermore, in [Y378F]LTA4 hydrolase, the value of kcat for epoxide hydrolysis was increased 2.5-fold over that of the wild-type enzyme. Thus, by a single-point mutation in LTA4 hydrolase, catalysis and covalent modification/inactivation have been dissociated, yielding an enzyme with increased turnover and resistance to mechanism-based inactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms that initiate reproductive development after fertilization are not understood. Reproduction in higher plants is unique because it is initiated by two fertilization events in the haploid female gametophyte. One sperm nucleus fertilizes the egg to form the embryo. A second sperm nucleus fertilizes the central cell to form the endosperm, a unique tissue that supports the growth of the embryo. Fertilization also activates maternal tissue differentiation, the ovule integuments form the seed coat, and the ovary forms the fruit. To investigate mechanisms that initiate reproductive development, a female-gametophytic mutation termed fie (fertilization-independent endosperm) has been isolated in Arabidopsis. The fie mutation specifically affects the central cell, allowing for replication of the central cell nucleus and endosperm development without fertilization. The fie mutation does not appear to affect the egg cell, suggesting that the processes that control the initiation of embryogenesis and endosperm development are different. FIE/fie seed coat and fruit undergo fertilization-independent differentiation, which shows that the fie female gametophyte is the source of signals that activates sporophytic fruit and seed coat development. The mutant fie allele is not transmitted by the female gametophyte. Inheritance of the mutant fie allele by the female gametophyte results in embryo abortion, even when the pollen bears the wild-type FIE allele. Thus, FIE carries out a novel, essential function for female reproductive development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L125R is a mutation in the transmembrane helix C of rhodopsin that is associated with autosomal dominant retinitis pigmentosa. To probe the orientation of the helix and its packing in the transmembrane domain, we have prepared and studied the mutations E122R, I123R, A124R, S127R, L125F, and L125A at, and in proximity to, the above mutation site. Like L125R, the opsin expressed in COS-1 cells from E122R did not bind 11-cis-retinal, whereas those from I123R and S127R formed the rhodopsin chromophore partially. A124R opsin formed the rhodopsin chromophore (lambda max 495 nm) in the dark, but the metarhodopsin II formed on illumination decayed about 6.5 times faster than that of the wild type and was defective in transducin activation. The mutant opsins from L125F and L125A bound 11-cis-retinal only partially, and in both cases, the mixtures of the proteins produced were separated into retinal-binding and non-retinal-binding (misfolded) fractions. The purified mutant rhodopsin from L125F showed lambda max at 500 nm, whereas that from L125A showed lambda max at 503 nm. The mutant rhodopsin L125F showed abnormal bleaching behavior and both mutants on illumination showed destabilized metarhodopsin II species and reduced transducin activation. Because previous results have indicated that misfolding in rhodopsin is due to the formation of a disulfide bond other than the normal disulfide bond between Cys-110 and Cys-187 in the intradiscal domain, we conclude from the misfolding in mutants L125F and L125A that the folding in vivo in the transmembrane domain is coupled to that in the intradiscal domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Escherichia coli methyl-directed mismatch repair is initiated by MutS-, MutL-, and ATP-dependent activation of MutH endonuclease, which cleaves at d(GATC) sites in the vicinity of a mismatch. This reaction provides an efficient method for detection of mismatches in heteroduplexes produced by hybridization of genetically distinct sequences after PCR amplification. Multiple examples of transition and transversion mutations, as well as one, two, and three nucleotide insertion/deletion mutants, have been detected in PCR heteroduplexes ranging in size from 400 bp to 2.5 kb. Background cleavage of homoduplexes is largely due to polymerase errors that occur during amplification, and the MutHLS reaction provides an estimate of the incidence of mutant sequences that arise during PCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increased prevalence of multidrug-resistant bacterial pathogens motivated us to attempt to enhance the therapeutic efficacy of bacteriophages. The therapeutic application of phages as antibacterial agents was impeded by several factors: (i) the failure to recognize the relatively narrow host range of phages; (ii) the presence of toxins in crude phage lysates; and (iii) a lack of appreciation for the capacity of mammalian host defense systems, particularly the organs of the reticuloendothelial system, to remove phage particles from the circulatory system. In our studies involving bacteremic mice, the problem of the narrow host range of phage was dealt with by using selected bacterial strains and virulent phage specific for them. Toxin levels were diminished by purifying phage preparations. To reduce phage elimination by the host defense system, we developed a serial-passage technique in mice to select for phage mutants able to remain in the circulatory system for longer periods of time. By this approach we isolated long-circulating mutants of Escherichia coli phage lambda and of Salmonella typhimurium phage P22. We demonstrated that the long-circulating lambda mutants also have greater capability as antibacterial agents than the corresponding parental strain in animals infected with lethal doses of bacteria. Comparison of the parental and mutant lambda capsid proteins revealed that the relevant mutation altered the major phage head protein E. The use of toxin-free, bacteria-specific phage strains, combined with the serial-passage technique, may provide insights for developing phage into therapeutically effective antibacterial agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The same heterozygous T -> C transition at nt 8567 of the von Willebrand factor (vWF) transcript was found in two unrelated patients with type III) von Willebrand disease, with no other apparent abnormality. In one family, both alleles were normal in the parents and one sister; thus, the mutation originated de novo in the proposita. The second patient also had asymptomatic parents who, however, were not available for study. The structural consequences of the identified mutation, resulting in the CyS2010 -> Arg substitution, were evaluated by expression of the vWF carboxyl-terminal domain containing residues 1366-2050. Insect cells infected with recombinant baculovirus expressing normal vWF sequence secreted a disulfide linked dimeric molecule with an apparent molecular mass of 150 kDa before reduction, yielding a single band of 80 kDa after disulfide bond reduction. In contrast, cells expressing the mutant fragment secreted a monomeric molecule of apparent molecular mass of 80 kDa, which remained unchanged after reduction. We conclude that CyS2010 is essential for normal dimerization of vWF subunits through disulfide bonding of carboxyl-terminal domains and that a heterozygous mutation in the corresponding codon is responsible for defective multimer formation in type III) von Willebrand disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The x-ray crystallographic structure of the photosynthetic reaction center (RC) has proven critical in understanding biological electron transfer processes. By contrast, understanding of intraprotein proton transfer is easily lost in the immense richness of the details. In the RC of Rhodobacter (Rb.) sphaeroides, the secondary quinone (QB) is surrounded by amino acid residues of the L subunit and some buried water molecules, with M- and H-subunit residues also close by. The effects of site-directed mutagenesis upon RC turnover and quinone function have implicated several L-subunit residues in proton delivery to QB, although some species differences exist. In wild-type Rb. sphaeroides, Glu L212 and Asp L213 represent an inner shell of residues of particular importance in proton transfer to QB. Asp L213 is crucial for delivery of the first proton, coupled to transfer of the second electron, while Glu L212, possibly together with Asp L213, is necessary for delivery of the second proton, after the second electron transfer. We report here the first study, by site-directed mutagenesis, of the role of the H subunit in QB function. Glu H173, one of a cluster of strongly interacting residues near QB, including Asp L213, was altered to Gln. In isolated mutant RCs, the kinetics of the first electron transfer, leading to formation of the semiquinone, QB-, and the proton-linked second electron transfer, leading to the formation of fully reduced quinol, were both greatly retarded, as observed previously in the Asp L213 --> Asn mutant. However, the first electron transfer equilibrium, QA-QB <==> QAQB-, was decreased, which is opposite to the effect of the Asp L213 --> Asn mutation. These major disruptions of events coupled to proton delivery to QB were largely reversed by the addition of azide (N3-). The results support a major role for electrostatic interactions between charged groups in determining the protonation state of certain entities, thereby controlling the rate of the second electron transfer. It is suggested that the essential electrostatic effect may be to "potentiate" proton transfer activity by raising the pK of functional entities that actually transfer protons in a coupled fashion with the second electron transfer. Candidates include buried water (H3O+) and Ser L223 (serine-OH2+), which is very close to the O5 carbonyl of the quinone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Escherichia coli dnaQ gene encodes the proofreading 3' exonuclease (epsilon subunit) of DNA polymerase III holoenzyme and is a critical determinant of chromosomal replication fidelity. We constructed by site-specific mutagenesis a mutant, dnaQ926, by changing two conserved amino acid residues (Asp-12-->Ala and Glu-14-->Ala) in the Exo I motif, which, by analogy to other proofreading exonucleases, is essential for the catalytic activity. When residing on a plasmid, dnaQ926 confers a strong, dominant mutator phenotype, suggesting that the protein, although deficient in exonuclease activity, still binds to the polymerase subunit (alpha subunit or dnaE gene product). When dnaQ926 was transferred to the chromosome, replacing the wild-type gene, the cells became inviable. However, viable dnaQ926 strains could be obtained if they contained one of the dnaE alleles previously characterized in our laboratory as antimutator alleles or if it carried a multicopy plasmid containing the E. coli mutL+ gene. These results suggest that loss of proofreading exonuclease activity in dnaQ926 is lethal due to excessive error rates (error catastrophe). Error catastrophe results from both the loss of proofreading and the subsequent saturation of DNA mismatch repair. The probability of lethality by excessive mutation is supported by calculations estimating the number of inactivating mutations in essential genes per chromosome replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barnase and barstar are trivial names of the extracellular RNase and its intracellular inhibitor produced by Bacillus amyloliquefaciens. Inhibition involves the formation of a very tight one-to-one complex of the two proteins. With the crystallographic solution of the structure of the barnase-barstar complex and the development of methods for measuring the free energy of binding, the pair can be used to study protein-protein recognition in detail. In this report, we describe the isolation of suppressor mutations in barstar that compensate for the loss in interaction energy caused by a mutation in barnase. Our suppressor search is based on in vivo selection for barstar variants that are able to protect host cells against the RNAse activity of those barnase mutants not properly inhibited by wild-type barstar. This approach utilizes a plasmid system in which barnase expression is tightly controlled to keep the mutant barnase gene silent. When expression of barnase is turned on, failure to form a complex between the mutant barnase and barstar has a lethal effect on host cells unless overcome by substitution of the wild-type barstar by a functional suppressor derivative. A set of barstar suppressors has been identified for barnase mutants with substitutions in two amino acid positions (residues 102 and 59), which are critically involved in both RNase activity and barstar binding. The mutations selected as suppressors could not have been predicted on the basis of the known protein structures. The single barstar mutation with the highest information content for inhibition of barnase (H102K) has the substitution Y30W. The reduction in binding caused by the R59E mutation in barnase can be partly reversed by changing Glu-76 of barstar, which forms a salt bridge with the Arg-59 in the wild-type complex, to arginine, thus completing an interchange of the two charges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While most effects of dopamine in the brain are mediated by the D1 and D2 receptor subtypes, other members of this G protein-coupled receptor family have potentially important functions. D3 receptors belong to the D2-like subclass of dopamine receptors, activation of which inhibits adenylyl cyclase. Using targeted mutagenesis in mouse embryonic stem cells, we have generated mice lacking functional D3 receptors. A premature chain-termination mutation was introduced in the D3 receptor gene after residue Arg-148 in the second intracellular loop of the predicted protein sequence. Binding of the dopamine antagonist [125I]iodosulpride to D3 receptors was absent in mice homozygous for the mutation and greatly reduced in heterozygous mice. Behavioral analysis of mutant mice showed that this mutation is associated with hyperactivity in an exploratory test. Homozygous mice lacking D3 receptors display increased locomotor activity and rearing behavior. Mice heterozygous for the D3 receptor mutation show similar, albeit less pronounced, behavioral alterations. Our findings indicate that D3 receptors play an inhibitory role in the control of certain behaviors.