161 resultados para Inhibiting Substance Promoter
Resumo:
Primer extension and RACE (rapid amplification of cDNA ends) assays were used to identify and sequence the 5' terminus of mouse ob mRNA. This sequence was used to obtain a recombinant bacteriophage containing the first exon of the encoding gene. DNA sequence analysis of the region immediately upstream of the first exon of the mouse ob gene revealed DNA sequences corresponding to presumptive cis-regulatory elements. A canonical TATA box was observed 30-34 base pairs upstream from the start site of transcription and a putative binding site for members of the C/EBP family of transcription factors was identified immediately upstream from the TATA box. Nuclear extracts prepared from primary adipocytes contained a DNA binding activity capable of avid and specific interaction with the putative C/EBP response element; antibodies to C/EBP alpha neutralized the DNA binding activity present in adipocyte nuclear extracts. When linked to a firefly luciferase reporter and transfected into primary adipocytes, the presumptive promoter of the mouse ob gene facilitated luciferase expression. When transfected into HepG2 cells, which lack C/EBP alpha, the mouse ob promoter was only weakly active. Supplementation of C/EBP alpha by cotransfection with a C/EBP alpha expression vector markedly stimulated luciferase expression. Finally, an ob promoter variant mutated at the C/EBP response element was inactive in both primary adipocytes and HepG2 cells. These observations provide evidence for identification of a functional promoter capable of directing expression of the mouse ob gene.
Resumo:
Estradiol is known to exert a protective effect against the development of atherosclerosis, but the mechanism by which this protection is mediated is unclear. Since animal studies strongly suggest that production of endothelium-derived relaxing factor is enhanced by estradiol, we have examined the effect of estrogens on nitric oxide (NO) synthase (NOS) activity, protein, and mRNA in cultured bovine aortic endothelial cells. In reporter cells rich in guanylate cyclase, it has been observed that long-term treatment (> or = 24 hr) with ethinylestradiol (EE2) dose-dependently increased guanylate cyclase-activating factor activity in the conditioned medium of endothelial cells. However, conversion of L-[14C]arginine to L-[14C]citrulline by endothelial cell homogenate or quantification of nitrite and nitrate released by intact cells in the conditioned medium did not reveal any change in NOS activity induced by EE2 treatment. Similarly, Western and Northern blot analyses did not reveal any change in the endothelial NOS protein and mRNA content in response to EE2. However, EE2 dose- and time-dependently decreased superoxide anion production in the conditioned medium of endothelial cells with an EC50 value (0.1 nM) close to that which increased guanylate cyclase-activating factor activity (0.5 nM). Both of these effects were completely prevented by the antiestrogens tamoxifen and RU54876. Thus, endothelium exposure to estrogens appears to induce a receptor-mediated antioxidant effect that enhances the biological activity of endothelium-derived NO. These effects could account at least in part for the vascular protective properties of these hormones.
Resumo:
Binding of transcriptional activators to a promoter is a prerequisite process in transcriptional activation. It is well established that the efficiency of activator binding to a promoter is determined by the affinity of direct interactions between the DNA-binding domain of an activator and its specific target sequences. However, I describe here that activator binding to a promoter is augmented in vivo by the effects of two other determinants that have not been generally appreciated: (i) the number of activator binding sites present in a promoter and (ii) the potency of activation domains of activators. Multiple sites within a promoter can cooperatively recruit cognate factors regardless of whether they contain an effective activation domain. This cooperativity can result in the synergistic activation of transcription. The second effect is the enhancement of activator binding to a promoter by the presence of activation domains. In this case, activation domains are not simply tethered to the promoter by the DNA-binding domain but instead assist the DNA-binding domain being tethered onto the promoter. This effect of activation domains on DNA binding is instrumental in determining how potent activators can induce steep transcriptional increases at low concentrations.
Resumo:
The terminal deoxynucleotidyltransferase (TdT) gene encodes a template-independent DNA polymerase that is expressed exclusively in immature lymphocytes. The TdT promoter lacks a TATA box, but an initiator element (Inr) overlaps the transcription start site. The Inr directs basal transcription and also mediates activated transcription in conjunction with an upstream element called D'. We have begun to address the fundamental question of why the TdT promoter contains an Inr rather than a TATA box. First, we tested the possibility that the TdT promoter lacks a TATA box because the -30 region is needed for the binding of an essential regulator. Mutations were introduced into the -30 region, and the mutants were tested in transient transfection and in vitro transcription assays. The mutations had only minor effects on promoter strength, suggesting that this first hypothesis is incorrect. Next, the effect of inserting a TATA box within the -30 region was tested. Although the TATA box enhanced promoter strength, appropriate regulation appeared to be maintained, as transcription in lymphocytes remained dependent on the D' element. Finally, a promoter variant containing a TATA box at -30, but a mutant Inr, was tested. Surprisingly, transcription from this variant, both in vitro and in vivo, was dramatically reduced. These results suggest that the TdT promoter, and possibly other natural promoters, contain an Inr element because one or more activator proteins that interact with surrounding control elements preferentially function in its presence.
Resumo:
Rev-erb alpha belongs to the nuclear receptor superfamily, which contains receptors for steroids, thyroid hormones, retinoic acid, and vitamin D, as well as "orphan" receptors. No ligand has been found for Rev-erb alpha to date, making it one of these orphan receptors. Similar to some other orphan receptors, Rev-erb alpha has been shown to bind DNA as a monomer on a specific sequence called a Rev-erb alpah responsive element (RevRE), but its transcriptional activity remains unclear. In this paper, we characterize a functional RevRE located in the human Rev-erb alpha promoter itself. We also present evidence that (i) Rev-erb alpha mediates transcriptional repression of its own promoter in vitro, (ii) this repressing effect strictly depends on the binding of Rev-erb alpha to its responsive element and is transferable to a heterologous promoter; and (iii) Rev-erb alpha binds to this responsive sequence as a homodimer.
Resumo:
Glycosylation-inhibiting factor (GIF) is a cytokine that is involved in the regulation of IgE synthesis. The crystal structure of recombinant human GIF was determined by the multiple isomorphous replacement method. The structure was refined to an R factor of 0.168 at 1.9 angstrom resolution. The overall structure is seen to consist of three interconnected subunits forming a barrel with three 6-stranded beta-sheets on the inside and six alpha-helices on the outside. There is a 5-angstrom-diameter "hole" through the middle of the barrel. The barrel structure of GIF in part resembles other "trefoil" cytokines such as interleukin 1 and fibroblast growth factor. Each subunit has a new class of alpha + beta sandwich structure consisting of two beta-alpha-beta motifs. These beta-alpha-beta motifs are related by a pseudo-twofold axis and resemble both interleukin 8 and the peptide binding domain of major histocompatibility complex protein, although the topology of the polypeptide chain is quite different.
Resumo:
Expression of mitogenic basic fibroblast growth factor (bFGF) in the central nervous system is inhibited by direct cell contact and is implicated in reactive and neoplastic transformation of astrocytes. The molecular mechanisms controlling expression of bFGF were examined in cultures of human astrocytes. Cell-density-dependent depletion of bFGF mRNA levels parallels changes in bFGF gene protein. Regulation of transcription of a bFGF luciferase reporter gene containing an upstream region (bp -1800 to +314) of the bFGF gene promoter mimicks the density-dependent regulation of the endogenous bFGF gene in transfected astrocytes. Deletion analysis has identified a fragment (bp -650 to -513) and sequences further downstream (bp -274 to +314) as the regions required for the regulation of bFGF gene activity by cell density. Unlike in astrocytes, changing the cell density of glioma cell cultures does not affect the levels of bFGF protein and mRNA. bFGF luciferase constructs were expressed at the same level in high- or low-density cultures of glioma cells, indicating altered regulation of the bFGF gene promoter. Electrophoretic mobility shift assays showed binding of nuclear proteins to a fragment of bFGF gene promoter from bp -650 to -453. This binding was abolished by a deletion of the upstream cell-density-responsive region (bp -650 to -512). Binding was observed with nuclear extracts from subconfluent astrocytes but was reduced in extracts from confluent astrocytes. Our results indicate that induction of bFGF in astrocytes upon reduction of cell density is mediated transcriptionally by positive trans-acting factors interacting with bFGF promoter. In contrast, nuclear proteins from glioma cells bind to the promoter region from bp -650 to -453 independent of cell density. Thus, the constitutive binding of trans-acting factor(s) to the region of the bFGF promoter from bp -650 to -453 may be responsible for the continuous expression of bFGF that leads to the uncontrolled growth of glioma cells.
Resumo:
The human chromosome 21 AML1 gene is expressed predominantly in the hematopoietic system. In several leukemia-associated translocations AML1 is fused to other genes and transcription of the fused regions is mediated by upstream sequences that normally regulate the expression of AML1. The 5' genomic region of AML1 was cloned and sequenced. The two 5' untranslated regions (UTRs) previously identified in AML1 cDNAs were located in this region and the distance between them was established. The distal 5' UTR maps over 7 kb upstream of the proximal one. Using primer extension with mRNA, transcription start sites were identified at two distinct sites above these 5' uTRs. Sequence analysis revealed the absence of a TATA motif and the presence of Sp1, PU.1, Oct, CRE, Myb, Ets, and Ets-like binding sites in both upstream regions. Several initiator elements (Inr) that overlap the transcription start sites were also identified. These proximal and distal upstream regions and their deletion mutants were cloned in front of a luciferase reporter gene and used in transfection assays. We demonstrate that both upstream regions function as promoters in hematopoietic (Jurkat) and nonhematopoietic (HEK) cell lines. The activity of both promoters was orientation dependent and was enhanced, in a cell-type specific manner, by a heterologous enhancer sequence. These results indicate that additional control elements, either negative or positive, regulate the tissue-specific expression of AML1.
Resumo:
The 5' region of the human lysozyme gene from -3500 to +25 was fused to a chloramphenicol acetyltransferase (CAT) reporter gene and three transgenic founder mice were obtained. All three transgenic lines showed the same pattern of CAT enzyme expression in adult mouse tissues that was consistent with the targeting of elicited, activated macrophages in tissues and developing and elicited granulocytes. In normal mice high CAT enzyme activity was found in the spleen, lung, and thymus, tissues rich in phagocytically active cells, but not in many other tissues, such as the gut and muscle, which contain resident macrophages. Cultured resident peritoneal macrophages and cells elicited 18 hr (granulocytes) and 4 days (macrophages) after injection of sterile thioglycollate broth expressed CAT activity. Bacillus Calmette-Guérin infection of transgenic mice resulted in CAT enzyme expression in the liver, which contained macrophage-rich granulomas, whereas the liver of uninfected mice did not have any detectable CAT enzyme activity. Although the Paneth cells of the small intestine in both human and mouse produce lysozyme, the CAT gene, under the control of the human lysozyme promoter, was not expressed in the mouse small intestine. These results indicate that the human lysozyme promoter region may be used to direct expression of genes to activated mouse myeloid cells.
Resumo:
The evolutionarily conserved Krüppel-associated box (KRAB) is present in the N-terminal regions of more than one-third of all Krüppel-class zinc finger proteins. Recent experiments have demonstrated that the KRAB-A domain tethered to a promoter DNA by connecting to heterologous DNA-binding protein domain or targeted to a promoter-proximal RNA sequence acts as a transcriptional silencing of RNA polymerase II promoters. Here we show that expression of KRAB domain suppresses in vivo the activating function of various defined activating transcription factors, and we demonstrate that the KRAB domain specifically silences the activity of promoters whose initiation is dependent on the presence of a TATA box. Promoters whose accurate transcription initiation is directed by a pyrimidine-rich initiator element, however, are relatively unaffected. We also report in vitro transcription experiments indicating that the KRAB domain is able to repress both activated and basal promoter activity. Thus, the KRAB domain appears to repress the activity of certain promoters through direct communication with TATA box-dependent basal transcription machinery.
Resumo:
Based on our previous transgenic mice results, which strongly suggested that separate cell-specific cis-acting elements of the mouse pro-alpha 1(I) collagen promoter control the activity of the gene in different type I collagen-producing cells, we attempted to delineate a short segment in this promoter that could direct high-level expression selectively in osteoblasts. By generating transgenic mice harboring various fragments of the promoter, we identified a 117-bp segment (-1656 to -1540) that is a minimal sequence able to confer high-level expression of a lacZ reporter gene selectively in osteoblasts when cloned upstream of the proximal 220-bp pro-alpha 1(I) promoter. This 220-bp promoter by itself was inactive in transgenic mice and unable to direct osteoblast-specific expression. The 117-bp enhancer segment contained two sequences that appeared to have different functions. The A sequence (-1656 to -1628) was required to obtain expression of the lacZ gene in osteoblasts, whereas the C sequence (-1575 to -1540) was essential to obtain consistent and high-level expression of the lacZ gene in osteoblasts. Gel shift assays showed that the A sequence bound a nuclear protein present only in osteoblastic cells. A mutation in the A segment that abolished the binding of this osteoblast-specific protein also abolished lacZ expression in osteoblasts of transgenic mice.
Resumo:
The (3;21)(q26;q22) translocation associated with treatment-related myelodysplastic syndrome, treatment-related acute myeloid leukemia, and blast crisis of chronic myeloid leukemia results in the expression of the chimeric genes AML1/EAP, AML1/MDS1, and AML1/EVI1. AML1 (CBFA2), which codes for the alpha subunit of the heterodimeric transcription factor CBF, is also involved in the t(8;21), and the gene coding for the beta subunit (CBFB) is involved in the inv(16). These are two of the most common recurring chromosomal rearrangements in acute myeloid leukemia. CBF corresponds to the murine Pebp2 factor, and CBF binding sites are found in a number of eukaryotic and viral enhancers and promoters. We studied the effects of AML1/EAP and AML1/MDS1 at the AML1 binding site of the CSF1R (macrophage-colony-stimulating factor receptor gene) promoter by using reporter gene assays, and we analyzed the consequences of the expression of both chimeric proteins in an embryonic rat fibroblast cell line (Rat1A) in culture and after injection into athymic nude mice. Unlike AML1, which is an activator of the CSF1R promoter, the chimeric proteins did not transactivate the CSF1R promoter site but acted as inhibitors of AML1 (CBFA2). AML1/EAP and AML1/MDS1 expressed in adherent Rat1A cells decreased contact inhibition of growth, and expression of AML1/MDS1 was associated with acquisition of the ability to grow in suspension culture. Expression of AML1/MDS1 increased the tumorigenicity of Rat1A cells injected into athymic nude mice, whereas AML1/EAP expression prevented tumor growth. These results suggest that expression of AML1/EAP and AML1/MDS1 can interfere with normal AML1 function, and that AML1/MDS1 has tumor-promoting properties in an embryonic rat fibroblast cell line.
Resumo:
The expression of inducible nitric oxide synthase (NOS2) is complex and is regulated in part by gene transcription. In this investigation we studied the regulation of NOS2 in a human liver epithelial cell line (AKN-1) which expresses high levels of NOS2 mRNA and protein in response to tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma (cytokine mix, CM). Nuclear run-on analysis revealed that CM transcriptionally activated the human NOS2 gene. To delineate the cytokine-responsive regions of the human NOS2 promoter, we stimulated AKN-1 cells with CM following transfection of NOS2 luciferase constructs. Analysis of the first 3.8 kb upstream of the NOS2 gene demonstrated basal promoter activity but failed to show any cytokine-inducible activity. However, 3- to 5-fold inductions of luciferase activity were seen in constructs extending up to -5.8 and -7.0 kg, and a 10-fold increase was seen upon transfection of a -16 kb construct. Further analysis of various NOS2 luciferase constructs ligated upstream of the thymidine kinase promoter identified three regions containing cytokine-responsive elements in the human NOS2 gene: -3.8 to -5.8, -5.8 to -7.0, and -7.0 to -16 kb. These results are in marked contrast with the murine macrophage NOS2 promoter in which only 1 kb of the proximal 5' flanking region is necessary to confer inducibility to lipopolysaccharide and interferon gamma. These data demonstrate that the human NOS2 gene is transcriptionally regulated by cytokines and identify multiple cytokine-responsive regions in the 5' flanking region of the human NOS2 gene.
Resumo:
We describe a dominant-negative approach in vivo to assess the strong, early upregulation of thyroid hormone receptor beta (TR beta) gene in response to thyroid hormone, characteristic of the onset of natural and thyroid hormone-induced amphibian metamorphosis, 3,3',5-Triiodo-thyronine (T3) treatment of organ cultures of premetamorphic Xenopus tadpole tails coinjected in vivo with the wild-type Xenopus TR beta (wt-xTR beta) and three different thyroid responsive element chloramphenicol acetyltransferase (TRE-CAT) reporter constructs, including a direct repeat +4 (DR +4) element in the -200/+87 fragment of the xTR beta promoter, resulted in a 4- to 8-fold enhancement of CAT activity. Two human C-terminal TR beta 1 mutants (delta-hTR beta 1 and Ts-hTR beta 1), an artificial Xenopus C-terminal deletion mutant (mt-xTR beta), and the oncogenic viral homology v-erbA, none of which binds T3, inhibited this T3 response of the endogenous wt-xTR in Xenopus XTC-2 cells cotransfected with the -1600/+87 xTR beta promoter-CAT construct, the potency of the dominant-negative effect of these mutant TRs being a function of the strength of their heterodimerization with Xenopus retinoid X receptor gamma. Coinjection of the dominant-negative Xenopus and human mutant TR beta s into Xenopus tadpole tails totally abolished the T3 responsiveness of the wt-xTR beta with different TREs, including the natural DR +4 TRE of the xTR beta promoter.
Resumo:
beta 2-Microglobulin is an essential subunit of major histocompatibility complex (Mhc) class I molecules, which present antigenic peptides to T lymphocytes. We sequenced a number of cDNAs and two genomic clones corresponding to chicken beta 2-microglobulin. The chicken beta 2-microglobulin gene has a similar genomic organization but smaller introns and higher G+C content than mammalian beta 2-microglobulin genes. The promoter region is particularly G+C-rich and contains, in addition to interferon regulatory elements, potential S/W, X, and Y boxes that were originally described for mammalian class II but not class I alpha or beta 2-microglobulin genes. There is a single chicken beta 2-microglobulin gene that has little polymorphism in the coding region. Restriction fragment length polymorphisms from Mhc homozygous lines, Mhc congenic lines, and backcross families, as well as in situ hybridization, show that the beta 2-microglobulin gene is located on a microchromosome different from the one that contains the chicken Mhc. We propose that the structural similarities between the beta 2-microglobulin and Mhc genes in the chicken are due to their presence on microchromosomes and suggest that these features and the microchromosomes appeared by deletion of DNA in the lineage leading to the birds.