177 resultados para GATA6 Transcription Factor
Resumo:
Neuronal plasticity plays a very important role in brain adaptations to environmental stimuli, disease, and aging processes. The kainic acid model of temporal lobe epilepsy was used to study the long-term anatomical and biochemical changes in the hippocampus after seizures. Using Northern blot analysis, immunocytochemistry, and Western blot analysis, we have found a long-term elevation of the proconvulsive opioid peptide, enkephalin, in the rat hippocampus. We have also demonstrated that an activator protein-1 transcription factor, the 35-kDa fos-related antigen, can be induced and elevated for at least 1 year after kainate treatment. This study demonstrated that a single systemic injection of kainate produces almost permanent increases in the enkephalin and an activator protein-1 transcription factor, the 35-kDa fos-related antigen, in the rat hippocampus, and it is likely that these two events are closely associated with the molecular mechanisms of induction of long-lasting enhanced seizure susceptibility in the kainate-induced seizure model. The long-term expression of the proenkephalin mRNA and its peptides in the kainate-treated rat hippocampus also suggests an important role in the recurrent seizures of temporal lobe epilepsy.
Resumo:
A cellular protein, previously described as p35/38, binds to the complementary (−)-strand of the leader RNA and intergenic (IG) sequence of mouse hepatitis virus (MHV) RNA. The extent of the binding of this protein to IG sites correlates with the efficiency of the subgenomic mRNA transcription from that IG site, suggesting that it is a requisite transcription factor. We have purified this protein and determined by partial peptide sequencing that it is heterogeneous nuclear ribonucleoprotein (hnRNP) A1, an abundant, primarily nuclear protein. hnRNP A1 shuttles between the nucleus and cytoplasm and plays a role in the regulation of alternative RNA splicing. The MHV(−)-strand leader and IG sequences conform to the consensus binding motifs of hnRNP A1. Recombinant hnRNP A1 bound to these two RNA regions in vitro in a sequence-specific manner. During MHV infection, hnRNP A1 relocalizes from the nucleus to the cytoplasm, where viral replication occurs. These data suggest that hnRNP A1 is a cellular factor that regulates the RNA-dependent RNA transcription of the virus.
Resumo:
The Brn-3 subfamily of POU–domain transcription factor genes consists of three highly homologous members—Brn-3a, Brn-3b, and Brn-3c—that are expressed in sensory neurons and in a small number of brainstem nuclei. This paper describes the role of Brn-3c in auditory and vestibular system development. In the inner ear, the Brn-3c protein is found only in auditory and vestibular hair cells, and the Brn-3a and Brn-3b proteins are found only in subsets of spiral and vestibular ganglion neurons. Mice carrying a targeted deletion of the Brn-3c gene are deaf and have impaired balance. These defects reflect a complete loss of auditory and vestibular hair cells during the late embryonic and early postnatal period and a secondary loss of spiral and vestibular ganglion neurons. Together with earlier work demonstrating a loss of trigeminal ganglion neurons and retinal ganglion cells in mice carrying targeted disruptions in the Brn-3a and Brn-3b genes, respectively, the Brn-3c phenotype reported here demonstrates that each of the Brn-3 genes plays distinctive roles in the somatosensory, visual, and auditory/vestibular systems.
Resumo:
TNF-induced activation of the transcription factor NF-κB and the c-jun N-terminal kinase (JNK/SAPK) requires TNF receptor-associated factor 2 (TRAF2). The NF-κB-inducing kinase (NIK) associates with TRAF2 and mediates TNF activation of NF-κB. Herein we show that NIK interacts with additional members of the TRAF family and that this interaction requires the conserved “WKI” motif within the TRAF domain. We also investigated the role of NIK in JNK activation by TNF. Whereas overexpression of NIK potently induced NF-κB activation, it failed to stimulate JNK activation. A kinase-inactive mutant of NIK was a dominant negative inhibitor of NF-κB activation but did not suppress TNF- or TRAF2-induced JNK activation. Thus, TRAF2 is the bifurcation point of two kinase cascades leading to activation of NF-κB and JNK, respectively.
Resumo:
Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.
Resumo:
Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole–imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located within RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.
Resumo:
Alveolar rhabdomyosarcoma is an aggressive pediatric cancer of striated muscle characterized in 60% of cases by a t(2;13)(q35;q14). This results in the fusion of PAX3, a developmental transcription factor required for limb myogenesis, with FKHR, a member of the forkhead family of transcription factors. The resultant PAX3-FKHR gene possesses transforming properties; however, the effects of this chimeric oncogene on gene expression are largely unknown. To investigate the actions of these transcription factors, both Pax3 and PAX3-FKHR were introduced into NIH 3T3 cells, and the resultant gene expression changes were analyzed with a murine cDNA microarray containing 2,225 elements. We found that PAX3-FKHR but not PAX3 activated a myogenic transcription program including the induction of transcription factors MyoD, Myogenin, Six1, and Slug as well as a battery of genes involved in several aspects of muscle function. Notable among this group were the growth factor gene Igf2 and its binding protein Igfbp5. Relevance of this model was suggested by verification that three of these genes (IGFBP5, HSIX1, and Slug) were also expressed in alveolar rhabdomyosarcoma cell lines. This study utilizes cDNA microarrays to elucidate the pattern of gene expression induced by an oncogenic transcription factor and demonstrates the profound myogenic properties of PAX3-FKHR in NIH 3T3 cells.
Resumo:
Accumulative evidence suggests that more than 20 neuron-specific genes are regulated by a transcriptional cis-regulatory element known as the neural restrictive silencer (NRS). A trans-acting repressor that binds the NRS, NRSF [also designated RE1-silencing transcription factor (REST)] has been cloned, but the mechanism by which it represses transcription is unknown. Here we show evidence that NRSF represses transcription of its target genes by recruiting mSin3 and histone deacetylase. Transfection experiments using a series of NRSF deletion constructs revealed the presence of two repression domains, RD-1 and RD-2, within the N- and C-terminal regions, respectively. A yeast two-hybrid screen using the RD-1 region as a bait identified a short form of mSin3B. In vitro pull-down assays and in vivo immunoprecipitation-Western analyses revealed a specific interaction between NRSF-RD1 and mSin3 PAH1-PAH2 domains. Furthermore, NRSF and mSin3 formed a complex with histone deacetylase 1, suggesting that NRSF-mediated repression involves histone deacetylation. When the deacetylation of histones was inhibited by tricostatin A in non-neuronal cells, mRNAs encoding several neuronal-specific genes such as SCG10, NMDAR1, and choline acetyltransferase became detectable. These results indicate that NRSF recruits mSin3 and histone deacetylase 1 to silence neural-specific genes and suggest further that repression of histone deacetylation is crucial for transcriptional activation of neural-specific genes during neuronal terminal differentiation.
Resumo:
Cell proliferation is regulated by the induction of growth promoting genes and the suppression of growth inhibitory genes. Malignant growth can result from the altered balance of expression of these genes in favor of cell proliferation. Induction of the transcription factor, c-Myc, promotes cell proliferation and transformation by activating growth promoting genes, including the ODC and cdc25A genes. We show that c-Myc transcriptionally represses the expression of a growth arrest gene, gas1. A conserved Myc structure, Myc box 2, is required for repression of gas1, and for Myc induction of proliferation and transformation, but not for activation of ODC. Activation of a Myc-estrogen receptor fusion protein by 4-hydroxytamoxifen was sufficient to repress gas1 gene transcription. These findings suggest that transcriptional repression of growth arrest genes, including gas1, is one step in promotion of cell growth by Myc.
Resumo:
The transcription factors nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1) coordinately regulate cytokine gene expression in activated T-cells by binding to closely juxtaposed sites in cytokine promoters. The structural basis for cooperative binding of NFAT and AP-1 to these sites, and indeed for the cooperative binding of transcription factors to composite regulatory elements in general, is not well understood. Mutagenesis studies have identified a segment of AP-1, which lies at the junction of its DNA-binding and dimerization domains (basic region and leucine zipper, respectively), as being essential for protein–protein interactions with NFAT in the ternary NFAT/AP-1/DNA complex. In a model of the ternary complex, the segment of NFAT nearest AP-1 is the Rel insert region (RIR), a feature that is notable for its hypervariability in size and in sequence amongst members of the Rel transcription factor family. Here we have used mutational analysis to study the role of the NFAT RIR in binding to DNA and AP-1. Parallel yeast one-hybrid screening assays in combination with alanine-scanning mutagenesis led to the identification of four amino acid residues in the RIR of NFAT2 (also known as NFATC1 or NFATc) that are essential for cooperativity with AP-1 (Ile-544, Glu-545, Thr-551, and Ile-553), and three residues that are involved in interactions with DNA (Lys-538, Arg-540, and Asn-541). These results were confirmed and extended through in vitro binding assays. We thus conclude that the NFAT RIR plays an essential dual role in DNA recognition and cooperative binding to AP-1 family transcription factors.
Resumo:
A natural (evolutionary) classification is provided for 242 basic helix–loop–helix (bHLH) motif-containing proteins. Phylogenetic analyses of amino acid sequences describe the patterns of evolutionary change within the motif and delimit evolutionary lineages. These evolutionary lineages represent well known functional groups of proteins and can be further arranged into five groups based on binding to DNA at the hexanucleotide E-box, the amino acid patterns in other components of the motif, and the presence/absence of a leucine zipper. The hypothesized ancestral amino acid sequence for the bHLH transcription factor family is given together with the ancestral sequences of the subgroups. It is suggested that bHLH proteins containing a leucine zipper are not a natural, monophyletic group.
Resumo:
We present evidence that the sporulation protein SpoIVFB of Bacillus subtilis is a member of a newly recognized family of metalloproteases that have catalytic centers adjacent to or within the membrane. SpoIVFB is required for converting the membrane-associated precursor protein, pro-σK, to the mature and active transcription factor σK by proteolytic removal of an N-terminal extension of 20 amino acids. SpoIVFB and other family members share the conserved sequence HEXXH, a hallmark of metalloproteases, as well as a second conserved motif NPDG, which is unique to the family. Both motifs, which are expected to form the catalytic center of the protease, overlap hydrophobic segments that are predicted to be separate transmembrane domains. The only other characterized member of this family of membrane-embedded metalloproteases is the mammalian Site-2 protease (S2P), which is required for the intramembrane cleavage of the eukaryotic transcription factor sterol regulatory element binding protein (SREBP). We report that amino acid substitutions in the two conserved motifs of SpoIVFB impair pro-σK processing and σK-directed gene expression during sporulation. These results and those from a similar analysis of S2P support the interpretation that both proteins are founding members of a family of metalloproteases involved in the activation of membrane-associated transcription factors. Thus, the pathways that govern the activation of the prokaryotic transcription factor pro-σK and the mammalian transcription factor SREBP not only are analogous but also use processing enzymes with strikingly homologous features.
Resumo:
By using site-specific protein-DNA photocrosslinking, we define the positions of TATA-binding protein, transcription factor IIB, transcription factor IIF, and subunits of RNA polymerase II (RNAPII) relative to promoter DNA within the human transcription preinitiation complex. The results indicate that the interface between the largest and second-largest subunits of RNAPII forms an extended, ≈240 Å channel that interacts with promoter DNA both upstream and downstream of the transcription start. By using electron microscopy, we show that RNAPII compacts promoter DNA by the equivalent of ≈50 bp. Together with the published structure of RNAPII, the results indicate that RNAPII wraps DNA around its surface and suggest a specific model for the trajectory of the wrapped DNA.
Resumo:
Growth hormone (GH) binding to its receptor modulates gene transcription by influencing the amount or activity of transcription factors. In the rat, GH exerts sexually dimorphic effects on liver gene transcription through its pattern of secretion which is intermittent in males and continuous in females. The expression of the CYP2C12 gene coding for the female-specific cytochrome P450 2C12 protein is dependent on the continuous exposure to GH. To identify the transcription factor(s) that mediate(s) this sex-dependent GH effect, we studied the interactions of the CYP2C12 promoter with liver nuclear proteins obtained from male and female rats and from hypophysectomized animals treated or not by continuous GH infusion. GH treatment induced the binding of a protein that we identified as hepatocyte nuclear factor (HNF) 6, the prototype of a novel class of homeodomain transcription factors. HNF-6 competed with HNF-3 for binding to the same site in the CYP2C12 promoter. This HNF-6/HNF-3 binding site conveyed both HNF-6- and HNF-3-stimulated transcription of a reporter gene construct in transient cotransfection experiments. Electrophoretic mobility shift assays showed more HNF-6 DNA-binding activity in female than in male liver nuclear extracts. Liver HNF-6 mRNA was barely detectable in the hypophysectomized rats and was restored to normal levels by GH treatment. This work provides an example of a homeodomain-containing transcription factor that is GH-regulated and also reports on the hormonal regulation of HNF-6.
Resumo:
In this study we demonstrate, at an ultrastructural level, the in situ distribution of heterogeneous nuclear RNA transcription sites after microinjection of 5-bromo-UTP (BrUTP) into the cytoplasm of living cells and subsequent postembedding immunoelectron microscopic visualization after different labeling periods. Moreover, immunocytochemical localization of several pre-mRNA transcription and processing factors has been carried out in the same cells. This high-resolution approach allowed us to reveal perichromatin regions as the most important sites of nucleoplasmic RNA transcription and the perichromatin fibrils (PFs) as in situ forms of nascent transcripts. Furthermore, we show that transcription takes place in a rather diffuse pattern, without notable local accumulation of transcription sites. RNA polymerase II, heterogeneous nuclear ribonucleoprotein (hnRNP) core proteins, general transcription factor TFIIH, poly(A) polymerase, splicing factor SC-35, and Sm complex of small nuclear ribonucleoproteins (snRNPs) are associated with PFs. This strongly supports the idea that PFs are also sites of major pre-mRNA processing events. The absence of nascent transcripts, RNA polymerase II, poly(A) polymerase, and hnRNPs within the clusters of interchromatin granules rules out the possibility that this domain plays a role in pre-mRNA transcription and polyadenylation; however, interchromatin granule-associated zones contain RNA polymerase II, TFIIH, and Sm complex of snRNPs and, after longer periods of BrUTP incubation, also Br-labeled RNA. Their role in nuclear functions still remains enigmatic. In the nucleolus, transcription sites occur in the dense fibrillar component. Our fine structural results show that PFs represent the major nucleoplasmic structural domain involved in active pre-mRNA transcriptional and processing events.