148 resultados para Domain of attraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of glycoprotein membrane-spanning domains in the process of membrane fusion is poorly understood. It has been demonstrated that replacing all or part of the membrane-spanning domain of a viral fusion protein with sequences that encode signals for glycosylphosphatidylinositol linkage attachment abrogates membrane fusion activity. It has been suggested, however, that the actual amino acid sequence of the membrane-spanning domain is not critical for the activity of viral fusion proteins. We have examined the function of Moloney murine leukemia virus envelope proteins with substitutions in the membrane-spanning domain. Envelope proteins bearing substitutions for proline 617 are processed and incorporated into virus particles normally and bind to the viral receptor. However, they possess greatly reduced or undetectable capacities for the promotion of membrane fusion and infectious virus particle formation. Our results imply a direct role for the residues in the membrane-spanning domain of the murine leukemia virus envelope protein in membrane fusion and its regulation. They also support the thesis that membrane-spanning domains possess a sequence-dependent function in other protein-mediated membrane fusion events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In all cells examined, specific endoplasmic reticulum (ER) membrane arrays are induced in response to increased levels of the ER membrane protein 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase. In yeast, expression of Hmg1p, one of two yeast HMG-CoA reductase isozymes, induces assembly of nuclear-associated ER stacks called karmellae. Understanding the features of HMG-CoA reductase that signal karmellae biogenesis would provide useful insights into the regulation of membrane biogenesis. The HMG-CoA reductase protein consists of two domains, a multitopic membrane domain and a cytosolic catalytic domain. Previous studies had indicated that the HMG-CoA reductase membrane domain was exclusively responsible for generation of ER membrane proliferations. Surprisingly, we discovered that this conclusion was incorrect: sequences at the carboxyl terminus of HMG-CoA reductase can profoundly affect karmellae biogenesis. Specifically, truncations of Hmg1p that removed or shortened the carboxyl terminus were unable to induce karmellae assembly. This result indicated that the membrane domain of Hmg1p was not sufficient to signal for karmellae assembly. Using β-galactosidase fusions, we demonstrated that the carboxyl terminus was unlikely to simply serve as an oligomerization domain. Our working hypothesis is that a truncated or misfolded cytosolic domain prevents proper signaling for karmellae by interfering with the required tertiary structure of the membrane domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligand binding domain of the human vitamin D receptor (VDR) was modeled based on the crystal structure of the retinoic acid receptor. The ligand binding pocket of our VDR model is spacious at the helix 11 site and confined at the β-turn site. The ligand 1α,25-dihydroxyvitamin D3 was assumed to be anchored in the ligand binding pocket with its side chain heading to helix 11 (site 2) and the A-ring toward the β-turn (site 1). Three residues forming hydrogen bonds with the functionally important 1α- and 25-hydroxyl groups of 1α,25-dihydroxyvitamin D3 were identified and confirmed by mutational analysis: the 1α-hydroxyl group is forming pincer-type hydrogen bonds with S237 and R274 and the 25-hydroxyl group is interacting with H397. Docking potential for various ligands to the VDR model was examined, and the results are in good agreement with our previous three-dimensional structure-function theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive assay using biotinylated ubiquitin revealed extensive ubiquitination of the large subunit of RNA polymerase II during incubations of transcription reactions in vitro. Phosphorylation of the repetitive carboxyl-terminal domain of the large subunit was a signal for ubiquitination. Specific inhibitors of cyclin-dependent kinase (cdk)-type kinases suppress the ubiquitination reaction. These kinases are components of transcription factors and have been shown to phosphorylate the carboxyl-terminal domain. In both regulation of transcription and DNA repair, phosphorylation of the repetitive carboxyl-terminal domain by kinases might signal degradation of the polymerase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many eubacterial DNA polymerases are bifunctional molecules having both polymerization (P) and 5′ nuclease (N) activities, which are contained in separable domains. We previously showed that the DNA polymerase I of Thermus aquaticus (TaqNP) endonucleolytically cleaves DNA substrates, releasing unpaired 5′ arms of bifurcated duplexes. Here, we compare the substrate specificities of TaqNP and the isolated 5′ nuclease domain of this enzyme, TaqN. Both enzymes are significantly activated by primer oligonucleotides that are hybridized to the 3′ arm of the bifurcation; optimal stimulation requires overlap of the 3′ terminal nucleotide of the primer with the terminal base pair of the duplex, but the terminal nucleotide need not hybridize to the complementary strand in the substrate. In the presence of Mn2+ ions, TaqN can cleave both RNA and circular DNA at structural bifurcations. Certain anti-TaqNP mAbs block cleavage by one or both enzymes, whereas others can stimulate cleavage of nonoptimal substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transducer and activator of transcription (Stat) proteins are latent transcription factors that reside in the cytoplasm before activation. On cytokine-induced tyrosine phosphorylation, these molecules dimerize and accumulate transiently in the nucleus. No specific signals mediating these processes have been identified to date. In this report, we examine the nuclear export of Stat1. We find that treatment of cells with the export inhibitor leptomycin B does not affect steady-state localization of Stat1 but impedes nuclear export after IFNγ-induced nuclear accumulation. We identify a conserved leucine-rich helical segment in the coiled-coil domain of Stat1, which is responsible for the efficient nuclear export of this protein. Mutation of two hallmark leucines within this segment greatly attenuate the back transport of Stat1 in the cytoplasm. When fused to a carrier protein, the Stat1 export sequence can mediate nuclear export after intranuclear microinjection. We show that prolonging the nuclear presence of Stat1 by inhibiting nuclear export reduces the transcriptional response to stimulation with IFNγ. These data suggest that Stats are actively exported from the nucleus via several separate pathways and link this activity to transcriptional activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Escherichia coli Hsp40 DnaJ and Hsp70 DnaK cooperate in the binding of proteins at intermediate stages of folding, assembly, and translocation across membranes. Binding of protein substrates to the DnaK C-terminal domain is controlled by ATP binding and hydrolysis in the N-terminal ATPase domain. The interaction of DnaJ with DnaK is mediated at least in part by the highly conserved N-terminal J-domain of DnaJ that includes residues 2–75. Heteronuclear NMR experiments with uniformly 15N-enriched DnaJ2–75 indicate that the chemical environment of residues located in helix II and the flanking loops is perturbed on interaction with DnaK or a truncated DnaK molecule, DnaK2–388. NMR signals corresponding to these residues broaden and exhibit changes in chemical shifts in the presence of DnaK(MgADP). Addition of MgATP largely reversed the broadening, indicating that NMR signals of DnaJ2–75 respond to ATP-dependent changes in DnaK. The J-domain interaction is localized to the ATPase domain of DnaK and is likely to be dominated by electrostatic interactions. The results suggest that the J-domain tethers DnaK to DnaJ-bound substrates, which DnaK then binds with its C-terminal peptide-binding domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protoporphyrinogen oxidase (EC 1–3-3–4), the 60-kDa membrane-bound flavoenzyme that catalyzes the final reaction of the common branch of the heme and chlorophyll biosynthesis pathways in plants, is the molecular target of diphenyl ether-type herbicides. It is highly resistant to proteases (trypsin, endoproteinase Glu-C, or carboxypeptidases A, B, and Y), because the protein is folded into an extremely compact form. Trypsin maps of the native purified and membrane-bound yeast protoporphyrinogen oxidase show that this basic enzyme (pI > 8.5) was cleaved at a single site under nondenaturing conditions, generating two peptides with relative molecular masses of 30,000 and 35,000. The endoproteinase Glu-C also cleaved the protein into two peptides with similar masses, and there was no additional cleavage site under mild denaturing conditions. N-terminal peptide sequence analysis of the proteolytic (trypsin and endoproteinase Glu-C) peptides showed that both cleavage sites were located in putative connecting loop between the N-terminal domain (25 kDa) with the βαβ ADP-binding fold and the C-terminal domain (35 kDa), which possibly is involved in the binding of the isoalloxazine moiety of the FAD cofactor. The peptides remained strongly associated and fully active with the Km for protoporphyrinogen and the Ki for various inhibitors, diphenyl-ethers, or diphenyleneiodonium derivatives, identical to those measured for the native enzyme. However, the enzyme activity of the peptides was much more susceptible to thermal denaturation than that of the native protein. Only the C-terminal domain of protoporphyrinogen oxidase was labeled specifically in active site-directed photoaffinity-labeling experiments. Trypsin may have caused intramolecular transfer of the labeled group to reactive components of the N-terminal domain, resulting in nonspecific labeling. We suggest that the active site of protoporphyrinogen oxidase is in the C-terminal domain of the protein, at the interface between the C- and N-terminal domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Escherichia coli DNA repair enzyme MutY plays an important role in the prevention of DNA mutations by removing misincorporated adenine residues from 7,8-dihydro-8-oxo-2′-deoxyguanosine:2′-deoxyadenosine (OG:A) mispairs. The N-terminal domain of MutY (Stop 225, Met1–Lys225) has a sequence and structure that is characteristic of a superfamily of base excision repair glycosylases; however, MutY and its homologs contain a unique C-terminal domain. Previous studies have shown that the C-terminal domain confers specificity for OG:A substrates over G:A substrates and exhibits homology to the d(OG)TPase MutT, suggesting a role in OG recognition. In order to provide additional information on the importance of the C-terminal domain in damage recognition, we have investigated the kinetic properties of a form lacking this domain (Stop 225) under multiple- and single-turnover conditions. In addition, the interaction of Stop 225 with a series of non-cleavable substrate and product analogs was evaluated using gel retardation assays and footprinting experiments. Under multiple-turnover conditions Stop 225 exhibits biphasic kinetic behavior with both OG:A and G:A substrates, likely due to rate-limiting DNA product release. However, the rate of turnover of Stop 225 was increased 2-fold with OG:A substrates compared to the wild-type enzyme. In contrast, the intrinsic rate for adenine removal by Stop 225 from both G:A and OG:A substrates is significantly reduced (10- to 25-fold) compared to the wild-type. The affinity of Stop 225 for substrate analogs was dramatically reduced, as was the ability to discriminate between substrate analogs paired with OG over G. Interestingly, similar hydroxyl radical and DMS footprinting patterns are observed for Stop 225 and wild-type MutY bound to DNA duplexes containing OG opposite an abasic site mimic or a non-hydrogen bonding A analog, suggesting that similar regions of the DNA are contacted by both enzyme forms. Importantly, Stop 225 has a reduced ability to prevent DNA mutations in vivo. This implies that the reduced adenine glycosylase activity translates to a reduced capacity of Stop 225 to prevent DNA mutations in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used integrin αLβ2 heterodimers containing I domains locked open (active) or closed (inactive) with disulfide bonds to investigate regulatory interactions among domains in integrins. mAbs to the αL I domain and β2 I-like domain inhibit adhesion of wild-type αLβ2 to intercellular adhesion molecule-1. However, with αLβ2 containing a locked open I domain, mAbs to the I domain were subdivided into subsets (i) that did not inhibit, and thus appear to inhibit by favoring the closed conformation, and (ii) that did inhibit, and thus appear to bind to the ligand binding site. Furthermore, αLβ2 containing a locked open I domain was completely resistant to inhibition by mAbs to the β2 I-like domain, but became fully susceptible to inhibition after disulfide reduction with DTT. This finding suggests that the I-like domain indirectly contributes to ligand binding by regulating opening of the I domain in wild-type αLβ2. Conversely, locking the I domain closed partially restrained conformational change of the I-like domain by Mn2+, as measured with mAb m24, which we map here to the β2 I-like domain. By contrast, locking the I domain closed or open did not affect constitutive or Mn2+-induced exposure of the KIM127 epitope in the β2 stalk region. Furthermore, locked open I domains, in αLβ2 complexes or expressed in isolation on the cell surface, bound to intercellular adhesion molecule-1 equivalently in Mg2+ and Mn2+. These results suggest that Mn2+ activates αLβ2 by binding to a site other than the I domain, most likely the I-like domain of β2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of erythropoietin (Epo) to the Epo receptor (EpoR) is crucial for production of mature red cells. Although it is well established that the Epo-bound EpoR is a dimer, it is not clear whether, in the absence of ligand, the intact EpoR is a monomer or oligomer. Using antibody-mediated immunofluorescence copatching (oligomerizing) of epitope-tagged receptors at the surface of live cells, we show herein that a major fraction of the full-length murine EpoR exists as preformed dimers/oligomers in BOSC cells, which are human embryo kidney 293T-derived cells. This observed oligomerization is specific because, under the same conditions, epitope-tagged EpoR did not oligomerize with several other tagged receptors (thrombopoietin receptor, transforming growth factor β receptor type II, or prolactin receptor). Strikingly, the EpoR transmembrane (TM) domain but not the extracellular or intracellular domains enabled the prolactin receptor to copatch with EpoR. Preformed EpoR oligomers are not constitutively active and Epo binding was required to induce signaling. In contrast to tyrosine kinase receptors (e.g., insulin receptor), which cannot signal when their TM domain is replaced by the strongly dimerizing TM domain of glycophorin A, the EpoR could tolerate the replacement of its TM domain with that of glycophorin A and retained signaling. We propose a model in which TM domain-induced dimerization maintains unliganded EpoR in an inactive state that can readily be switched to an active state by physiologic levels of Epo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The posttranslational modification of eukaryotic intracellular proteins by O-linked N-acetylglucosamine (O-GlcNAc) monosaccharides is essential for cell viability, yet its precise functional roles are largely unknown. O-GlcNAc transferase utilizes UDP-GlcNAc, the end product of hexosamine biosynthesis, to catalyze this modification. The availability of UDP-GlcNAc correlates with glycosylation levels of intracellular proteins as well as with transcriptional levels of some genes. Meanwhile, transcription factors and RNA polymerase II can be modified by O-GlcNAc. A linkage between transcription factor O-GlcNAcylation and transcriptional regulation therefore has been postulated. Here, we show that O-GlcNAcylation of a chimeric transcriptional activator containing the second activation domain of Sp1 decreases its transcriptional activity both in an in vitro transcription system and in living cells, which is in concert with our observation that O-GlcNAcylation of Sp1 activation domain blocks its in vitro and in vivo interactions with other Sp1 molecules and TATA-binding protein-associated factor II 110. Furthermore, overexpression of O-GlcNAc transferase specifically inhibits transcriptional activation by native Sp1 in cells. Thus, our studies provide direct evidence that O-GlcNAcylation of transcription factors is involved in transcriptional regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA binding by transcriptional activators is typically an obligatory step in the activation of gene expression. Activator binding and subsequent steps in transcription are repressed by genomic chromatin. Studies in vitro have suggested that overcoming this repression is an important function of some activation domains. Here we provide quantitative in vivo evidence that the activation domain of GAL4-VP16 can increase the affinity of GAL4 for its binding site on genomic DNA in mammalian cells. Moreover, the VP16 activation domain has a much greater stimulatory effect on expression from a genomic reporter gene than on a transiently transfected reporter gene, where factor binding is more permissive. We found that not all activation domains showed a greater activation potential in a genomic context, suggesting that only some activation domains can function in vivo to alleviate the repressive effects of chromatin. These data demonstrate the importance of activation domains in relieving chromatin-mediated repression in vivo and suggest that one way they function is to increase binding of the activator itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue-specific transcription is regulated in part by cell type-restricted proteins that bind to defined sequences in target genes. The DNA-binding domain of these proteins is often evolutionarily conserved. On this basis, liver-enriched transcription factors were classified into five families. We describe here the mammalian prototype of a sixth family, which we therefore call hepatocyte nuclear factor 6 (HNF-6). It activates the promoter of a gene involved in the control of glucose metabolism. HNF-6 contains two different DNA-binding domains. One of these corresponds to a novel type of homeodomain. The other is homologous to the Drosophila cut domain. A similar bipartite sequence is coded by the genome of Caenorhabditis elegans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel human cDNA encoding a cytosolic 62-kDa protein (p62) that binds to the Src homology 2 (SH2) domain of p56lck in a phosphotyrosine-independent manner has been cloned. The cDNA is composed of 2074 nucleotides with an open reading frame encoding 440 amino acids. Northern analysis suggests that p62 is expressed ubiquitously in all tissues examined. p62 is not homologous to any known protein in the data base. However, it contains a cysteine-rich region resembling a zinc finger motif, a potential G-protein-binding region, a PEST motif, and several potential phosphorylation sites. Using T7-epitope tagged p62 expression in HeLa cells, the expressed protein was shown to bind to the lck SH2 domain. Deletion of the N-terminal 50 amino acids abolished binding, but mutagenesis of the single tyrosine residue in this region had no effect on binding. Thus, the cloned cDNA indeed encodes the p62 protein, which is a phosphotyrosine-independent ligand for the lck SH2 domain. Its binding mechanism is unique with respect to binding modes of other known ligands for SH2 domains.