144 resultados para Deoxy hipusina synthase
Resumo:
Sterol-regulated transcription of the gene for rat farnesyl diphosphate (FPP) synthase (geranyl-diphosphate:isopentenyl-diphosphate geranyltranstransferase, EC 2.5.1.10) is dependent in part on the binding of the ubiquitous transcription factor NF-Y to a 6-bp element within the proximal promoter. Current studies identify a second element in this promoter that is also required for sterol-regulated transcription in vivo. Mutation of three nucleotides (CAC) within this element blocks the 8-fold induction of FPP synthase promoter-reporter genes that normally occurs when the transfected cells are incubated in medium deprived of sterols. Gel mobility-shift assays demonstrate that the transcriptionally active 68-kDa fragment of the sterol regulatory element (SRE-1)-binding protein assays (SREBP-1) binds to an oligonucleotide containing the wild-type sequence but not to an oligonucleotide in which the CAC has been mutated. DNase 1 protection pattern (footprint) analysis indicates that SREBP-1 binds to nucleotides that include the CAC. Both the in vivo and in vitro assays are affected by mutagenesis of nucleotides adjacent to the CAC. Coexpression of SREBP with a wild-type FPP synthase promoter-reporter gene in CV-1 cells results in very high levels of reporter activity that is sterol-independent. In contrast, the reporter activity remained low when the promoter contained a mutation in the CAC trinucleotide. We conclude that sterol-regulated transcription of FPP synthase is controlled in part by the interaction of SREBP with a binding site that we have termed SRE-3. Identification of this element may prove useful in the identification of other genes that are both regulated by SREBP and involved in lipid biosynthesis.
Resumo:
Inducible nitric oxide synthase (iNOS; EC 1.14.13.39) is expressed in rat glomerular mesangial cells upon exposure to the inflammatory cytokine interleukin 1 beta (IL-1 beta). We have reported that nanomolar concentrations of dexamethasone suppress IL-1 beta-induced iNOS protein expression and production of nitrite, the stable end product of NO formation, without affecting IL-1 beta-triggered increase in iNOS mRNA levels. We now have studied the mechanisms by which dexamethasone suppresses IL-1 beta-stimulated iNOS expression in mesangial cells. Surprisingly, nuclear run-on transcription experiments demonstrate that dexamethasone markedly attenuates IL-1 beta-induced iNOS gene transcription. However, this is counteracted by a prolongation of the half-life of iNOS mRNA from 1 h to 2.5 h by dexamethasone. Moreover, dexamethasone drastically reduces the amount of iNOS protein by reduction of iNOS mRNA translation and increased degradation of iNOS protein. These results indicate that glucocorticoids act at multiple levels to regulate iNOS expression, thus providing important insights into the treatment of inflammatory diseases.
Resumo:
Nitric oxide (NO) has been implicated as a pathogenic mediator in a variety of central nervous system (CNS) disease states, including the animal model of multiple sclerosis (MS) and experimental allergic encephalomyelitis. We have examined post-mortem brain tissues collected from patients previously diagnosed with MS, as well as tissues collected from the brains of patients dying without neuropathies. Both Northern blot analysis and reverse transcriptase (RT)-driven in situ PCR (RT-in situ PCR) studies demonstrated that inducible NO synthase (iNOS) mRNA was present in the brain tissues from MS patients but was absent in equivalent tissues from normal controls. We have also performed experiments identifying the cell type responsible for iNOS expression by RT-in situ PCR in combination with immunohistochemistry. Concomitantly, we analyzed the tissues for the presence of the NO reaction product nitrotyrosine to demonstrate the presence of a protein nitrosylation adduct. We report here that iNOS mRNA was detectable in the brains of 100% of the CNS tissues from seven MS patients examined but in none of the three normal brains. RT-in situ PCR experiments also demonstrated the presence of iNOS mRNA in the cytoplasm of cells that also expressed the ligand recognized by the Ricinus communis agglutinin 1 (RCA-1), a monocyte/macrophage lineage marker. Additionally, specific labeling of cells was observed when brain tissues from MS patients were exposed to antisera reactive with nitrotyrosine residues but was significantly less plentiful in brain tissue from patients without CNS disease. These results demonstrate that iNOS, one of the enzymes responsible for the production of NO, is expressed at significant levels in the brains of patients with MS and may contribute to the pathology associated with the disease.
Resumo:
Nitric oxide synthases (NOSs) require tetrahydrobiopterin (BH4) for dimerization and NO production. Mutation analysis of mouse inducible NOS (iNOS; NOS2) identified Gly-450 and Ala-453 as critical for NO production, dimer formation, and BH4 binding. Substitutions at five neighboring positions were tolerated, and normal binding of heme, calmodulin, and NADPH militated against major distortions affecting the NH2-terminal portion, midzone, or COOH terminus of the inactive mutants. Direct involvement of residues 450 and 453 in the binding of BH4 is supported by the striking homology of residues 448-480 to a region extensively shared by the three BH4-utilizing aromatic amino acid hydroxylases and is consistent with the conservation of these residues among all 10 reported NOS sequences, including mammalian NOSs 1, 2, and 3, as well as avian and insect NOSs. Altered binding of BH4 and/or L-arginine may explain how the addition of a single methyl group to the side chain of residue 450 or the addition of three methylenes to residue 453 can each abolish an enzymatic activity that reflects the concerted function of 1143 other residues.
Resumo:
Murine inducible nitric oxide (NO) synthase (iNOS) is catalytically active only in dimeric form. Assembly of its purified subunits into a dimer requires H4B. To understand the structure-activity relationships of human iNOS, we constitutively expressed recombinant human iNOS in NIH 3T3 cells by using a retroviral vector. These cells are deficient in de novo H4B biosynthesis and the role of H4B in the expression and assembly of active iNOS in an intact cell system could be studied. In the absence of added H4B, NO synthesis by the cells was minimal, whereas cells grown with supplemental H4B or the H4B precursor sepiapterin generated NO (74.1 and 63.3 nmol of nitrite per 10(6) cells per 24 h, respectively). NO synthesis correlated with an increase in intracellular H4B but no increase in iNOS protein. Instead, an increased percentage of dimeric iNOS was observed, rising from 20% in cytosols from unsupplemented cells to 66% in H4B-supplemented cell cytosols. In all cases, only dimeric iNOS displayed catalytic activity. Cytosols prepared from H4B-deficient cells exhibited little iNOS activity but acquired activity during a 60- to 120-min incubation with H4B, reaching final activities of 60-72 pmol of citrulline per mg of protein per min. Reconstitution of cytosolic NO synthesis activity was associated with conversion of monomers into dimeric iNOS during the incubation. Thus, human iNOS subunits dimerize to form an active enzyme, and H4B plays a critical role in promoting dimerization in intact cells. This reveals a post-translational mechanism by which intracellular H4B can regulate iNOS expression.
Resumo:
The endothelial nitric oxide synthase (ec-NOS) plays a key role in the transduction of signals from the bloodstream to the underlying smooth muscle. ecNOS undergoes a complex series of covalent modifications, including myristoylation and palmitoylation, which appear to play a role in ecNOS membrane association. Mutagenesis of the myristoylation site, which prevents both myristoylation and palmitoylation, blocks ecNOS targeting to cell membranes. Further, as described for some G-protein alpha subunits, both membrane association and palmitoylation of ecNOS are dynamically regulated: in response to agonists, the enzyme undergoes partial redistribution to the cell cytosol concomitant with depalmitoylation. To clarify the role of palmitoylation in determining ecNOS subcellular localization, we have constructed palmitoylation-deficient mutants of ecNOS. Serine was substituted for cysteine at two potential palmitoylation sites (Cys-15 and Cys-26) by site-directed mutagenesis. Immunoprecipitation of ecNOS mutants following cDNA transfection and biosynthetic labeling with [3H]palmitate revealed that mutagenesis of either cysteine residue attenuated palmitoylation, whereas replacement of both residues completely eliminated palmitoylation. Analysis of N-terminal deletion mutations of ecNOS demonstrated that the region containing these two cysteine residues is both necessary and sufficient for enzyme palmitoylation. The cysteines thus identified as the palmitoylation sites for ecNOS are separated by an unusual (Gly-Leu)5 sequence and appear to define a sequence motif for dual acylation. We analyzed the subcellular distribution of ecNOS mutants by differential ultracentrifugation and found that mutagenesis of the ecNOS palmitoylation sites markedly reduced membrane association of the enzyme. These results document that ecNOS palmitoylation is an important determinant for the subcellular distribution of ecNOS and identify a new motif for the reversible palmitoylation of signaling proteins.
Resumo:
Indirect immunofluorescence methods using a mouse monoclonal antibody raised to rat choline acetyltransferase (ChAT) revealed dense networks of ChAT-immunoreactive fibers in the superior cervical ganglion, the stellate ganglion, and the celiac superior mesenteric ganglion of the rat. Numerous and single ChAT-immunoreactive cell bodies were observed in the stellate and superior cervical ganglia, respectively. The majority of ChAT-immunoreactive fibers in the stellate and superior cervical ganglia were nitric oxide synthase (NOS) positive. Some ChAT-immunoreactive fibers contained enkephalin-like immunoreactivity. Virtually all ChAT-positive cell bodies in the stellate ganglion were vasoactive intestinal polypeptide (VIP)-positive, and some were calcitonin gene-related peptide (CGRP)-positive. After transection of the cervical sympathetic trunk almost all ChAT- and NOS-positive fibers and most enkephalin- and CGRP-positive fibers disappeared in the superior cervical ganglion. The results suggest that most preganglionic fibers are cholinergic and that the majority of these in addition can release nitric oxide, some enkephalin, and a few CGRP. Acetylcholine, VIP, and CGRP are coexisting messenger molecules in some postganglionic sympathetic neurons.
Resumo:
Nitric oxide produced by cytokine-inducible nitric oxide synthase (iNOS) is thought to be important in the pathogenesis of septic shock. To further our understanding of the role of iNOS in normal biology and in a variety of inflammatory disorders, including septic shock, we have used gene targeting to generate a mouse strain that lacks iNOS. Mice lacking iNOS were indistinguishable from wild-type mice in appearance and histology. Upon treatment with lipopolysaccharide and interferon gamma, peritoneal macrophages from the mutant mice did not produce nitric oxide measured as nitrite in the culture medium. In addition, lysates of these cells did not contain iNOS protein by immunoblot analysis or iNOS enzyme activity. In a Northern analysis of total RNA, no iNOS transcript of the correct size was detected. No increases in serum nitrite plus nitrate levels were observed in homozygous mutant mice treated with a lethal dose of lipopolysaccharide, but the mutant mice exhibited no significant survival advantage over wild-type mice. These results show that lack of iNOS activity does not prevent mortality in this murine model for septic shock.
Resumo:
Nitric oxide (NO) is an intercellular messenger involved with various aspects of mammalian physiology ranging from vasodilation and macrophage cytotoxicity to neuronal transmission. NO is synthesized from L-arginine by NO synthase (NOS). Here, we report the cloning of a Drosophila NOS gene, dNOS, located at cytological position 32B. The dNOS cDNA encodes a protein of 152 kDa, with 43% amino acid sequence identity to rat neuronal NOS. Like mammalian NOSs, DNOS protein contains putative binding sites for calmodulin, FMN, FAD, and NADPH. DNOS activity is Ca2+/calmodulin dependent when expressed in cell culture. An alternative RNA splicing pattern also exists for dNOS, which is identical to that for vertebrate neuronal NOS. These structural and functional observations demonstrate remarkable conservation of NOS between vertebrates and invertebrates.
Resumo:
Sucrose synthase (SuSy; EC 2.4.1.13; sucrose + UDP reversible UDPglucose + fructose) has always been studied as a cytoplasmic enzyme in plant cells where it serves to degrade sucrose and provide carbon for respiration and synthesis of cell wall polysaccharides and starch. We report here that at least half of the total SuSy of developing cotton fibers (Gossypium hirsutum) is tightly associated with the plasma membrane. Therefore, this form of SuSy might serve to channel carbon directly from sucrose to cellulose and/or callose synthases in the plasma membrane. By using detached and permeabilized cotton fibers, we show that carbon from sucrose can be converted at high rates to both cellulose and callose. Synthesis of cellulose or callose is favored by addition of EGTA or calcium and cellobiose, respectively. These findings contrast with the traditional observation that when UDPglucose is used as substrate in vitro, callose is the major product synthesized. Immunolocalization studies show that SuSy can be localized at the fiber surface in patterns consistent with the deposition of cellulose or callose. Thus, these results support a model in which SuSy exists in a complex with the beta-glucan synthases and serves to channel carbon from sucrose to glucan.
Resumo:
The activity of glycogen synthase (GSase; EC 2.4.1.11) is regulated by covalent phosphorylation. Because of this regulation, GSase has generally been considered to control the rate of glycogen synthesis. This hypothesis is examined in light of recent in vivo NMR experiments on rat and human muscle and is found to be quantitatively inconsistent with the data under conditions of glycogen synthesis. Our first experiments showed that muscle glycogen synthesis was slower in non-insulin-dependent diabetics compared to normals and that their defect was in the glucose transporter/hexokinase (GT/HK) part of the pathway. From these and other in vivo NMR results a quantitative model is proposed in which the GT/HK steps control the rate of glycogen synthesis in normal humans and rat muscle. The flux through GSase is regulated to match the proximal steps by "feed forward" to glucose 6-phosphate, which is a positive allosteric effector of all forms of GSase. Recent in vivo NMR experiments specifically designed to test the model are analyzed by metabolic control theory and it is shown quantitatively that the GT/HK step controls the rate of glycogen synthesis. Preliminary evidence favors the transporter step. Several conclusions are significant: (i) glucose transport/hexokinase controls the glycogen synthesis flux; (ii) the role of covalent phosphorylation of GSase is to adapt the activity of the enzyme to the flux and to control the metabolite levels not the flux; (iii) the quantitative data needed for inferring and testing the present model of flux control depended upon advances of in vivo NMR methods that accurately measured the concentration of glucose 6-phosphate and the rate of glycogen synthesis.
Resumo:
Fatty acid synthase (FAS; EC 2.3.1.85) was purified to near homogeneity from a human hepatoma cell line, HepG2. The HepG2 FAS has a specific activity of 600 nmol of NADPH oxidized per min per mg, which is about half that of chicken liver FAS. All the partial activities of human FAS are comparable to those of other animal FASs, except for the beta-ketoacyl synthase, whose significantly lower activity is attributable to the low 4'-phosphopantetheine content of HepG2 FAS. We cloned the human brain FAS cDNA. The cDNA sequence has an open reading frame of 7512 bp that encodes 2504 amino acids (M(r), 272,516). The amino acid sequence of the human FAS has 79% and 63% identity, respectively, with the sequences of the rat and chicken enzymes. Northern analysis revealed that human FAS mRNA was about 9.3 kb in size and that its level varied among human tissues, with brain, lung, and liver tissues showing prominent expression. The nucleotide sequence of a segment of the HepG2 FAS cDNA (bases 2327-3964) was identical to that of the cDNA from normal human liver and brain tissues, except for a 53-bp sequence (bases 3892-3944) that does not alter the reading frame. This altered sequence is also present in HepG2 genomic DNA. The origin and significance of this sequence variance in the HepG2 FAS gene are unclear, but the variance apparently does not contribute to the lower activity of HepG2 FAS.
Resumo:
The neuronal nitric oxide synthase (nNOS) has been successfully overexpressed in Escherichia coli, with average yields of 125-150 nmol (20-24 mg) of enzyme per liter of cells. The cDNA for nNOS was subcloned into the pCW vector under the control of the tac promotor and was coexpressed with the chaperonins groEL and groES in the protease-deficient BL21 strain of E. coli. The enzyme produced is replete with heme and flavins and, after overnight incubation with tetrahydrobiopterin, contains 0.7 pmol of tetrahydrobiopterin per pmol of nNOS. nNOS is isolated as a predominantly high-spin heme protein and demonstrates spectral properties that are identical to those of nNOS isolated from stably transfected human kidney 293 cells. It binds N omega-nitroarginine dependent on the presence of bound tetrahydrobiopterin and exhibits a Kd of 45 nM. The enzyme is completely functional; the specific activity is 450 nmol/min per mg. This overexpression system will be extremely useful for rapid, inexpensive preparation of large amounts of active nNOS for use in mechanistic and structure/function studies, as well as for drug design and development.
Resumo:
The dorsoventral axis is established early in Xenopus development and may involve signaling by Wnts, a family of Wnt1-protooncogene-related proteins. The protein kinase shaggy functions in the wingless/Wnt signaling pathway, which operates during Drosophila development. To assess the role of a closely related kinase, glycogen synthase kinase 3 beta (GSK-3 beta), in vertebrate embryogenesis, we cloned a cDNA encoding a Xenopus homolog of GSK-3 beta (XGSK-3 beta). XGSK-3 beta-specific transcripts were detected by Northern analysis in Xenopus eggs and early embryos. Microinjection of the mRNA encoding a catalytically inactive form of rat GSK-3 beta into a ventrovegetal blastomere of eight-cell embryos caused ectopic formation of a secondary body axis containing a complete set of dorsal and anterior structures. Furthermore, in isolated ectodermal explants, the mutant GSK-3 beta mRNA activated the expression of neural tissue markers. Wild-type XGSK-3 beta mRNA suppressed the dorsalizing effects of both the mutated GSK-3 beta and Xenopus dishevelled, a proposed upstream signaling component of the same pathway. These results strongly suggest that XGSK-3 beta functions to inhibit dorsoventral axis formation in the embryo and provide evidence for conservation of the Wnt signaling pathway in Drosophila and vertebrates.
Resumo:
Nitric oxide (NO) is an important mediator of inflammatory responses in the lung and a key regulator of bronchomotor tone. An airway NO synthase (NOS; EC 1.14.13.39) has been proposed as a source of endogenous NO in the lung but has not been clearly defined. Through molecular cloning, we conclusively demonstrate that NO synthesis in normal human airways is due to the continuous expression of the inducible NOS (iNOS) isoform in airway epithelial cells. Although iNOS mRNA expression is abundant in airway epithelial cells, expression is not detected in other pulmonary cell types, indicating that airway epithelial cells are unique in the continuous pattern of iNOS expression in the lung. In situ analysis reveals all airway epithelial cell types express iNOS. However, removal of epithelial cells from the in vivo airway environment leads to rapid loss of iNOS expression, which suggests expression is dependent upon conditions and/or factors present in the airway. Quantitation of NOS activity in epithelial cell lysates indicates nanomolar levels of NO synthesis occur in vivo. Remarkably, the high-level iNOS expression is constant in airway epithelium of normal individuals over time. However, expression is strikingly decreased by inhaled corticosteroids and beta-adrenergic agonists, medications commonly used in treatment of inflammatory airway diseases. Based upon these findings, we propose that respiratory epithelial cells are key inflammatory cells in the airway, functioning in host defense and potentially playing a role in airway inflammation.