262 resultados para DNA-damaging activity
Resumo:
The yeast heat shock transcription factor (HSF) belongs to the winged helix family of proteins. HSF binds DNA as a trimer, and additional trimers can bind DNA co-operatively. Unlike other winged helix–turn–helix proteins, HSF’s wing does not appear to contact DNA, as based on a previously solved crystal structure. Instead, the structure implies that the wing is involved in protein–protein interactions, possibly within a trimer or between adjacent trimers. To understand the function of the wing in the HSF DNA-binding domain, a Saccharomyces cerevisiae strain was created that expresses a wingless HSF protein. This strain grows normally at 30°C, but shows a decrease in reporter gene expression during constitutive and heat-shocked conditions. Removal of the wing does not affect the stability or trimeric nature of a protein fragment containing the DNA-binding and trimerization domains. Removal of the wing does result in a decrease in DNA-binding affinity. This defect was mainly observed in the ability to form the first trimer-bound complex, as the formation of larger complexes is unaffected by the deletion. Our results suggest that the wing is not involved in the highly co-operative nature of HSF binding, but may be important in stabilizing the first trimer bound to DNA.
Resumo:
To examine the coupling of ATP hydrolysis to helicase translocation along DNA, we have purified and characterized complexes of the Escherichia coli Rep protein, a dimeric DNA helicase, covalently crosslinked to a single-stranded hexadecameric oligodeoxynucleotide (S). Crosslinked Rep monomers (PS) as well as singly ligated (P2S) and doubly ligated (P2S2) Rep dimers were characterized. The equilibrium and kinetic constants for Rep dimerization as well as the steady-state ATPase activities of both PS and P2S crosslinked complexes were identical to the values determined for un-crosslinked Rep complexes formed with dT16. Therefore, ATP hydrolysis by both PS and P2S complexes are not coupled to DNA dissociation. This also rules out a strictly unidirectional sliding mechanism for ATP-driven translocation along single-stranded DNA by either PS or the P2S dimer. However, ATP hydrolysis by the doubly ligated P2S2 Rep dimer is coupled to single-stranded DNA dissociation from one subunit of the dimer, although loosely (low efficiency). These results suggest that ATP hydrolysis can drive translocation of the dimeric Rep helicase along DNA by a "rolling" mechanism where the two DNA binding sites of the dimer alternately bind and release DNA. Such a mechanism is biologically important when one subunit binds duplex DNA, followed by subsequent unwinding.
Resumo:
Five extremely thermophilic Archaea from hydrothermal vents were isolated, and their DNA polymerases were cloned and expressed in Escherichia coli. Protein splicing elements (inteins) are present in many archaeal DNA polymerases, but only the DNA polymerase from strain GB-C contained an intein. Of the five cloned DNA polymerases, the Thermococcus sp. 9 degrees N-7 DNA polymerase was chosen for biochemical characterization. Thermococcus sp. 9 degrees N-7 DNA polymerase exhibited temperature-sensitive strand displacement activity and apparent Km values for DNA and dNTP similar to those of Thermococcus litoralis DNA polymerase. Six substitutions in the 3'-5' exonuclease motif I were constructed in an attempt to reduce the 3'-5' exonuclease activity of Thermococcus sp. 9 degrees N-7 DNA polymerase. Five mutants resulted in no detectable 3'-5' exonuclease activity, while one mutant (Glul43Asp) had <1% of wild-type activity.
Resumo:
Several epidemiologic studies indicate that NAT2-related slow N-acetylation increases bladder cancer risk among workers exposed to aromatic amines, presumably because N-acetylation is important for the detoxification of these compounds. Previously, we showed that NAT2 polymorphisms did not influence bladder cancer risk among Chinese workers exposed exclusively to benzidine (BZ), suggesting that NAT2 N-acetylation is not a critical detoxifying pathway for this aromatic amine. To evaluate the biologic plausibility of this finding, we carried out a cross-sectional study of 33 workers exposed to BZ and 15 unexposed controls in Ahmedabad, India, to evaluate the presence of BZ-related DNA adducts in exfoliated urothelial cells, the excretion pattern of BZ metabolites, and the impact of NAT2 activity on these outcomes. Four DNA adducts were significantly elevated in exposed workers compared to controls; of these, the predominant adduct cochromatographed with a synthetic N-(3'- phosphodeoxyguanosin-8-yl)-N'-acetylbenzidine standard and was the only adduct that was significantly associated with total BZ urinary metabolites (r = 0.68, P < 0.0001). To our knowledge this is the first report to show that BZ forms DNA adducts in exfoliated urothelial cells of exposed humans and that the predominant adduct formed is N-acetylated, supporting the concept that monofunctional acetylation is an activation, rather than a detoxification, step for BZ. However, because almost all BZ-related metabolites measured in the urine of exposed workers were acetylated among slow, as well as rapid, acetylators (mean +/- SD 95 +/- 1.9% vs. 97 +/- 1.6%, respectively) and NAT2 activity did not affect the levels of any DNA adduct measured, it is unlikely that interindividual variation in NAT2 function is relevant for BZ-associated bladder carcinogenesis.
Resumo:
In PCR, DNA polymerases from thermophilic bacteria catalyze the extension of primers annealed to templates as well as the structure-specific cleavage of the products of primer extension. Here we show that cleavage by Thermus aquaticus and Thermus thermophilus DNA polymerases can be precise and substantial: it occurs at the base of the stem-loop structure assumed by the single strand products of primer extension using as template a common genetic element, the promoter-operator of the Escherichia coli lactose operon, and may involve up to 30% of the products. The cleavage is independent of primer, template, and triphosphates, is dependent on substrate length and temperature, requires free ends and Mg2+, and is absent in DNA polymerases lacking the 5'-->3' exonuclease, such as the Stoffel fragment and the T7 DNA polymerase. Heterogeneity of the extension products results also from premature detachment of the enzyme approaching the 5' end of the template.
Resumo:
Agrobacterium tumefaciens transfers transferred DNA (T-DNA), a single-stranded segment of its tumor-inducing (Ti) plasmid, to the plant cell nucleus. The Ti-plasmid-encoded virulence E2 (VirE2) protein expressed in the bacterium has single-stranded DNA (ssDNA)-binding properties and has been reported to act in the plant cell. This protein is thought to exert its influence on transfer efficiency by coating and accompanying the single-stranded T-DNA (ss-T-DNA) to the plant cell genome. Here, we analyze different putative roles of the VirE2 protein in the plant cell. In the absence of VirE2 protein, mainly truncated versions of the T-DNA are integrated. We infer that VirE2 protects the ss-T-DNA against nucleolytic attack during the transfer process and that it is interacting with the ss-T-DNA on its way to the plant cell nucleus. Furthermore, the VirE2 protein was found not to be involved in directing the ss-T-DNA to the plant cell nucleus in a manner dependent on a nuclear localization signal, a function which is carried by the NLS of VirD2. In addition, the efficiency of T-DNA integration into the plant genome was found to be VirE2 independent. We conclude that the VirE2 protein of A. tumefaciens is required to preserve the integrity of the T-DNA but does not contribute to the efficiency of the integration step per se.
Resumo:
V(D)J rearrangement is the molecular mechanism by which an almost infinite array of specific immune receptors are generated. Defects in this process result in profound immunodeficiency as is the case in the C.B-17 SCID mouse or in RAG-1 (recombination-activating gene 1) or RAG-2 deficient mice. It has recently become clear that the V(D)J recombinase most likely consists of both lymphoid-specific factors and ubiquitously expressed components of the DNA double-strand break repair pathway. The deficit in SCID mice is in a factor that is required for both of these pathways. In this report, we show that the factor defective in the autosomal recessive severe combined immunodeficiency of Arabian foals is required for (i) V(D)J recombination, (ii) resistance to ionizing radiation, and (iii) DNA-dependent protein kinase activity.
Resumo:
The Rep protein of geminiviruses is the sole viral protein required for their DNA replication. The amino acid sequence of Rep protein contains an NTP binding consensus motif (P-loop). Here we show that purified Rep protein of tomato yellow leaf curl virus expressed in Escherichia coli exhibits an ATPase activity in vitro. Amino acid exchanges in the P-loop sequence of Rep causes a substantial decrease or loss of the ATPase activity. In vivo, mutant viruses carrying these Rep mutations do not replicate in plant cells. These results show that ATP binding by the Rep protein of geminiviruses is required for its function in viral DNA replication.
Resumo:
The murine p53 protein contains two nucleic acid-binding sites, a sequence-specific DNA-binding region localized between amino acid residues 102-290 and a nucleic acid-binding site without sequence specificity that has been localized to residues 364-390. Alternative splicing of mRNA generates two forms of this p53 protein. The normal, or majority, splice form (NSp53) retains its carboxyl-terminal sequence-nonspecific nucleic acid-binding site, which can negatively regulate the sequence-specific DNA-binding site. The alternative splice form of p53 (ASp53) replaces amino acid residues 364-390 with 17 different amino acids. This protein fails to bind nucleic acids nonspecifically and is constitutive for sequence-specific DNA binding. Thus, the binding of nucleic acids at the carboxyl terminus regulates sequence-specific DNA binding by p53. The implications of these findings for the activation of p53 transcriptional activity following DNA damage are discussed.
Resumo:
CREB-binding proteins (CBP) and p300 are essential transcriptional coactivators for a large number of regulated DNA-binding transcription factors, including CREB, nuclear receptors, and STATs. CBP and p300 function in part by mediating the assembly of multiprotein complexes that contain additional cofactors such as p300/CBP interacting protein (p/CIP), a member of the p160/SRC family of coactivators, and the p300/CBP associated factor p/CAF. In addition to serving as molecular scaffolds, CBP and p300 each possess intrinsic acetyltransferase activities that are required for their function as coactivators. Here we report that the adenovirus E1A protein inhibits the acetyltransferase activity of CBP on binding to the C/H3 domain, whereas binding of CREB, or a CREB/E1A fusion protein to the KIX domain, fails to inhibit CBP acetyltransferase activity. Surprisingly, p/CIP can either inhibit or stimulate CBP acetyltransferase activity depending on the specific substrate evaluated and the functional domains present in the p/CIP protein. While the CBP interaction domain of p/CIP inhibits acetylation of histones H3, H4, or high mobility group by CBP, it enhances acetylation of other substrates, such as Pit-1. These observations suggest that the acetyltransferase activities of CBP/p300 and p/CAF can be differentially modulated by factors binding to distinct regions of CBP/p300. Because these interactions are likely to result in differential effects on the coactivator functions of CBP/p300 for different classes of transcription factors, regulation of CBP/p300 acetyltransferase activity may represent a mechanism for integration of diverse signaling pathways.
MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1
Resumo:
The DNA mismatch repair (MMR) is a specialized system, highly conserved throughout evolution, involved in the maintenance of genomic integrity. To identify novel human genes that may function in MMR, we employed the yeast interaction trap. Using the MMR protein MLH1 as bait, we cloned MED1. The MED1 protein forms a complex with MLH1, binds to methyl-CpG-containing DNA, has homology to bacterial DNA repair glycosylases/lyases, and displays endonuclease activity. Transfection of a MED1 mutant lacking the methyl-CpG-binding domain (MBD) is associated with microsatellite instability (MSI). These findings suggest that MED1 is a novel human DNA repair protein that may be involved in MMR and, as such, may be a candidate eukaryotic homologue of the bacterial MMR endonuclease, MutH. In addition, these results suggest that cytosine methylation may play a role in human DNA repair.
Resumo:
The basal transcription factor IIE (TFIIE) is thought to be one of the last factors to be assembled into a preinitiation complex (PIC) at eukaryotic promoters after RNA polymerase II and TFIIF have been incorporated. It was shown that a primary function of TFIIE is to recruit and cooperate with TFIIH in promoter melting. Here, we show that the large subunit of TFIIE (E56) can directly stimulate TBP binding to the promoter in the absence of other basal factors. The zinc-finger domain of E56, required for transcriptional activity, is critical for this function. In addition, the small subunit of TFIIE (E34) directly contacts DNA and TFIIA and thus providing a second mechanism for TFIIE to help binding of a TBP/IIA complex to the promoter, the first critical step in the PIC assembly. These studies suggest an alternative PIC assembly pathway in which TFIIE affects both TBP and TFIIH functions during initiation of RNA synthesis.
Resumo:
Nitric oxide (NO) is known to have various biologic and pathophysiologic effects on organisms. The molecular mechanisms by which NO exerts harmful effects are unknown, although various O2 radicals and ions that result from reactivity of NO are presumed to be involved. Here we report that adaptive cellular response controlled by the transcription factor hypoxia-inducible factor 1 (HIF-1) in hypoxia is suppressed by NO. Induction of erythropoietin and glycolytic aldolase A mRNAs in hypoxically cultured Hep3B cells, a human hepatoma cell line, was completely and partially inhibited, respectively, by the addition of sodium nitroprusside (SNP), which spontaneously releases NO. A reporter plasmid carrying four hypoxia-response element sequences connected to the luciferase structural gene was constructed and transfected into Hep3B cells. Inducibly expressed luciferase activity in hypoxia was inhibited by the addition of SNP and two other structurally different NO donors, S-nitroso-l-glutathione and 3-morpholinosydnonimine, giving IC50 values of 7.8, 211, and 490 μM, respectively. Inhibition by SNP was also observed in Neuro 2A and HeLa cells, indicating that the inhibition was not cell-type-specific. The vascular endothelial growth factor promoter activity that is controlled by HIF-1 was also inhibited by SNP (IC50 = 6.6 μM). Induction generated by the addition of cobalt ion (this treatment mimics hypoxia) was also inhibited by SNP (IC50 = 2.5 μM). Increased luciferase activity expressed by cotransfection of effector plasmids for HIF-1α or HIF-1α-like factor in hypoxia was also inhibited by the NO donor. We also showed that the inhibition was performed by blocking an activation step of HIF-1α to a DNA-binding form.
Resumo:
To enhance the efficacy of DNA malaria vaccines, we evaluated the effect on protection of immunizing with various combinations of DNA, recombinant vaccinia virus, and a synthetic peptide. Immunization of BALB/c mice with a plasmid expressing Plasmodium yoelii (Py) circumsporozoite protein (CSP) induces H-2Kd-restricted CD8+ cytotoxic T lymphocyte (CTL) responses and CD8+ T cell- and interferon (IFN)-γ-dependent protection of mice against challenge with Py sporozoites. Immunization with a multiple antigenic peptide, including the only reported H-2Kd-restricted CD8+ T cell epitope on the PyCSP (PyCSP CTL multiple antigenic peptide) and immunization with recombinant vaccinia expressing the PyCSP induced CTL but only modest to minimal protection. Mice were immunized with PyCSP DNA, PyCSP CTL multiple antigenic peptide, or recombinant vaccinia expressing PyCSP, were boosted 9 wk later with the same immunogen or one of the others, and were challenged. Only mice immunized with DNA and boosted with vaccinia PyCSP (D-V) (11/16: 69%) or DNA (D-D) (7/16: 44%) had greater protection (P < 0.0007) than controls. D-V mice had significantly higher individual levels of antibodies and class I-restricted CTL activity than did D-D mice; IFN-γ production by ELIspot also was higher in D-V than in D-D mice. In a second experiment, three different groups of D-V mice each had higher levels of protection than did D-D mice, and IFN-γ production was significantly greater in D-V than in D-D mice. The observation that priming with PyCSP DNA and boosting with vaccinia-PyCSP is more immunogenic and protective than immunizing with PyCSP DNA alone supports consideration of a similar sequential immunization approach in humans.
Resumo:
Instability of repetitive sequences, both in intronic sequences and within coding regions, has been demonstrated to be a hallmark of genomic instability in human cancer. Understanding how these mutational events arise may provide an opportunity for prevention or early intervention in cancer development. To study the source of this instability, we have identified a region of the β-lactamase gene that is tolerant to the insertion of fragments of exogenous DNA as large as 1,614 bp with minimal loss of enzyme activity, as determined by antibiotic resistance. Fragments inserted out-of-frame render Escherichia coli sensitive to antibiotic, and compensatory frameshift mutations that restore the reading frame of β-lactamase can be selected on the basis of antibiotic resistance. We have utilized this site to insert a synthetic microsatellite sequence within the β-lactamase gene and selected for mutations yielding frameshifts. This assay provides for detection of one frameshift mutation in a background of 106 wild-type sequences. Mismatch repair deficiency increased the observed frameshift frequency ≈300-fold. Exposure of plasmid containing microsatellite sequences to hydrogen peroxide resulted in frameshift mutations that were localized exclusively to the microsatellite sequences, whereas DNA damage by UV or N-methyl-N′-nitro-N-nitrosoguanidine did not result in enhanced mutagenesis. We postulate that in tumor cells, endogenous production of oxygen free radicals may be a major factor in promoting instability of microsatellite sequences. This β-lactamase assay may provide a sensitive methodology for the detection and quantitation of mutations associated with the development of cancer.