154 resultados para DNA repair doublestrandbreak toxicology histone h2ax chromatin


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Amphibian metamorphosis is marked by dramatic, thyroid hormone (TH)-induced changes involving gene regulation by TH receptor (TR). It has been postulated that TR-mediated gene regulation involves chromatin remodeling. In the absence of ligand, TR can repress gene expression by recruiting a histone deacetylase complex, whereas liganded TR recruits a histone acetylase complex for gene activation. Earlier studies have led us to propose a dual function model for TR during development. In premetamorphic tadpoles, unliganded TR represses transcription involving histone deacetylation. During metamorphosis, endogenous TH allows TR to activate gene expression through histone acetylation. Here using chromatin immunoprecipitation assay, we directly demonstrate TR binding to TH response genes constitutively in vivo in premetamorphic tadpoles. We further show that TH treatment leads to histone deacetylase release from TH response gene promoters. Interestingly, in whole animals, changes in histone acetylation show little correlation with the expression of TH response genes. On the other hand, in the intestine and tail, where TH response genes are known to be up-regulated more dramatically by TH than in most other organs, we demonstrate that TH treatment induces gene activation and histone H4 acetylation. These data argue for a role of histone acetylation in transcriptional regulation by TRs during amphibian development in some tissues, whereas in others changes in histone acetylation levels may play no or only a minor role, supporting the existence of important alternative mechanisms in gene regulation by TR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ERCC1–XPF is a structure-specific nuclease with two subunits, ERCC1 and XPF. The enzyme cuts DNA at junctions where a single strand moves 5′ to 3′ away from a branch point with duplex DNA. This activity has a central role in nucleotide excision repair (NER), DNA cross-link repair and recombination. To dissect the activities of the nuclease it is necessary to investigate the subunits individually, as studies of the enzyme so far have only used the heterodimeric complex. We produced recombinant ERCC1 and XPF separately in Escherichia coli as soluble proteins. Activity was monitored by a sensitive dual incision assay for NER by complementation of cell extracts. XPF and ERCC1 are unstable in mammalian cells in the absence of their partners but we found, surprisingly, that ERCC1 alone could confer some repair to extracts from ERCC1-defective cells. A version of ERCC1 lacking the first 88 non-conserved amino acids was also functional. This indicated that a small amount of active XPF was present in ERCC1 extracts, and immunoassays showed this to be the case. Some repair in XPF-defective extracts could be achieved by adding ERCC1 and XPF proteins together, but not by adding only XPF. The results show for the first time that functional ERCC1–XPF can be formed from separately produced subunits. Protein sequence comparison revealed similarity between the ERCC1 family and the C-terminal region of the XPF family, including the regions of both proteins that are necessary for the ERCC1–XPF heterodimeric interaction. This suggests that the ERCC1 and XPF families are related via an ancient duplication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

8-Oxoguanine-DNA glycosylase 1 (OGG1), with intrinsic AP lyase activity, is the major enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG), a critical mutagenic DNA lesion induced by reactive oxygen species. Human OGG1 excised the damaged base from an 8-oxoG·C-containing duplex oligo with a very low apparent kcat of 0.1 min–1 at 37°C and cleaved abasic (AP) sites at half the rate, thus leaving abasic sites as the major product. Excision of 8-oxoG by OGG1 alone did not follow Michaelis–Menten kinetics. However, in the presence of a comparable amount of human AP endonuclease (APE1) the specific activity of OGG1 was increased ∼5-fold and Michaelis–Menten kinetics were observed. Inactive APE1, at a higher molar ratio, and a bacterial APE (Nfo) similarly enhanced OGG1 activity. The affinity of OGG1 for its product AP·C pair (Kd ∼ 2.8 nM) was substantially higher than for its substrate 8-oxoG·C pair (Kd ∼ 23.4 nM) and the affinity for its final β-elimination product was much lower (Kd ∼ 233 nM). These data, as well as single burst kinetics studies, indicate that the enzyme remains tightly bound to its AP product following base excision and that APE1 prevents its reassociation with its product, thus enhancing OGG1 turnover. These results suggest coordinated functions of OGG1 and APE1, and possibly other enzymes, in the DNA base excision repair pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

L1 elements are human transposons which replicate via an RNA intermediate. At least 15% of the human genome is composed of L1 sequence. An important initial step in the transposition reaction is nicking of the genomic DNA by L1 endonuclease (L1 EN). In vivo much of the genome exists in the form of chromatin or is undergoing biochemical transactions such as transcription, replication or repair, which may alter the accessibility of the L1 transposition machinery to DNA. To investigate this possibility we have examined the effect of substrate chromatinization on the ability of L1 EN to nick DNA. We find that DNA incorporated into nucleosomes is generally refractory to nicking by L1 EN. Interestingly, nicking of a minority of DNA sequences is enhanced when included in chromatin. Thus, dynamic epigenetic factors such as chromatinization are likely to influence the relatively permanent placement of L1 and other retroelements in the human genome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA double-strand breaks (DSBs) in eukaryotic cells can be repaired by non-homologous end-joining or homologous recombination. The complex containing the Mre11, Rad50 and Nbs1 proteins has been implicated in both DSB repair pathways, even though they are mechanistically different. To get a better understanding of the properties of the human Mre11 (hMre11) protein, we investigated some of its biochemical activities. We found that hMre11 binds both double- and single-stranded (ss)DNA, with a preference for ssDNA. hMre11 does not require DNA ends for efficient binding. Interestingly, hMre11 mediates the annealing of complementary ssDNA molecules. In contrast to the annealing activity of the homologous recombination protein hRad52, the activity of hMre11 is abrogated by the ssDNA binding protein hRPA. We discuss the possible implications of the results for the role(s) of hMre11 in both DSB repair pathways.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adenine-DNA glycosylase MutY of Escherichia coli catalyzes the cleavage of adenine when mismatched with 7,8-dihydro-8-oxoguanine (GO), an oxidatively damaged base. The biological outcome is the prevention of C/G→A/T transversions. The molecular mechanism of base excision repair (BER) of A/GO in mammals is not well understood. In this study we report stimulation of mammalian adenine-DNA glycosylase activity by apurinic/apyrimidinic (AP) endonuclease using murine homolog of MutY (Myh) and human AP endonuclease (Ape1), which shares 94% amino acid identity with its murine homolog Apex. After removal of adenine by the Myh glycosylase activity, intact AP DNA remains due to lack of an efficient Myh AP lyase activity. The study of wild-type Ape1 and its catalytic mutant H309N demonstrates that Ape1 catalytic activity is required for formation of cleaved AP DNA. It also appears that Ape1 stimulates Myh glycosylase activity by increasing formation of the Myh–DNA complex. This stimulation is independent of the catalytic activity of Ape1. Consequently, Ape1 preserves the Myh preference for A/GO over A/G and improves overall glycosylase efficiency. Our study suggests that protein–protein interactions may occur in vivo to achieve efficient BER of A/GO.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We cloned cDNA encoding chicken cytoplasmic histone acetyltransferase-1, chHAT-1, comprising 408 amino acids including a putative initiation Met. It exhibits 80.4% identity to the human homolog and possesses a typical leucine zipper motif. The glutathione S-transferase (GST) pull-down assay, involving truncated and missense mutants of the chicken chromatin assembly factor-1 (chCAF-1)p48, revealed not only that a region (comprising amino acids 376–405 of chCAF-1p48 and containing the seventh WD dipeptide motif) binds to chHAT-1 in vitro, but also that mutation of the motif has no influence on the in vitro interaction. The GST pull-down assay, involving truncated and missense chHAT-1 mutants, established that a region, comprising amino acids 380–408 of chHAT-1 and containing the leucine zipper motif, is required for its in vitro interaction with chCAF-1p48. In addition, mutation of each of four Leu residues in the leucine zipper motif prevents the in vitro interaction. The yeast two-hybrid assay revealed that all four Leu residues within the leucine zipper motif of chHAT-1 are necessary for its in vivo interaction with chCAF-1p48. These results indicate not only that the proper leucine zipper motif of chHAT-1 is essential for its interaction with chCAF-1p48, but also that the propeller structure of chCAF-1p48 expected to act as a platform for protein–protein interactions may not be necessary for this interaction of chHAT-1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA polymerase ɛ (Polɛ) is thought to be involved in DNA replication, repair, and cell-cycle checkpoint control in eukaryotic cells. Although the requirement of other replicative DNA polymerases, DNA polymerases α and δ (Polα and δ), for chromosomal DNA replication has been well documented by genetic and biochemical studies, the precise role, if any, of Polɛ in chromosomal DNA replication is still obscure. Here we show, with the use of a cell-free replication system with Xenopus egg extracts, that Xenopus Polɛ is indeed required for chromosomal DNA replication. In Polɛ-depleted extracts, the elongation step of chromosomal DNA replication is markedly impaired, resulting in significant reduction of the overall DNA synthesis as well as accumulation of small replication intermediates. Moreover, despite the decreased DNA synthesis, excess amounts of Polα are loaded onto the chromatin template in Polɛ-depleted extracts, indicative of the failure of proper assembly of DNA synthesis machinery at the fork. These findings strongly suggest that Polɛ, along with Polα and Polδ, is necessary for coordinated chromosomal DNA replication in eukaryotic cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Homologous DNA recombination is a fundamental, regenerative process within living organisms. However, in most organisms, homologous recombination is a rare event, requiring a complex set of reactions and extensive homology. We demonstrate in this paper that Beta protein of phage λ generates recombinants in chromosomal DNA by using synthetic single-stranded DNAs (ssDNA) as short as 30 bases long. This ssDNA recombination can be used to mutagenize or repair the chromosome with efficiencies that generate up to 6% recombinants among treated cells. Mechanistically, it appears that Beta protein, a Rad52-like protein, binds and anneals the ssDNA donor to a complementary single-strand near the DNA replication fork to generate the recombinant. This type of homologous recombination with ssDNA provides new avenues for studying and modifying genomes ranging from bacterial pathogens to eukaryotes. Beta protein and ssDNA may prove generally applicable for repairing DNA in many organisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been postulated that ionizing radiation produces a unique form of cellular DNA damage called “clustered damages” or “multiply damaged sites”. Here, we show that clustered DNA damages are indeed formed in Escherichia coli by ionizing radiation and are converted to lethal double-strand breaks during attempted base-excision repair. In wild-type cells possessing the oxidative DNA glycosylases that cleave DNA at repairable single damages, double-strand breaks are formed at radiation-induced clusters during postirradiation incubation and also in a dose-dependent fashion. E. coli mutants lacking these enzymes do not form double-strand breaks postirradiation and are substantially more radioresistant than wild-type cells. Furthermore, overproduction of one of the oxidative DNA glycosylases in mutant cells confers a radiosensitive phenotype and an increase in the number of double-strand breaks. Thus, the effect of the oxidative DNA glycosylases in potentiating DNA damage must be considered when estimating radiation risk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

8-Oxoguanine (8-oxoG), induced by reactive oxygen species and arguably one of the most important mutagenic DNA lesions, is prone to further oxidation. Its one-electron oxidation products include potentially mutagenic guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) because of their mispairing with A or G. All three oxidized base-specific DNA glycosylases of Escherichia coli, namely endonuclease III (Nth), 8-oxoG-DNA glycosylase (MutM) and endonuclease VIII (Nei), excise Gh and Sp, when paired with C or G in DNA, although Nth is less active than the other two. MutM prefers Sp and Gh paired with C (kcat/Km of 0.24–0.26 min–1 nM–1), while Nei prefers G over C as the complementary base (kcat/Km – 0.15–0.17 min–1 nM–1). However, only Nei efficiently excises these paired with A. MutY, a 8-oxoG·A(G)-specific A(G)-DNA glycosylase, is inactive with Gh(Sp)·A/G-containing duplex oligonucleotide, in spite of specific affinity. It inhibits excision of lesions by MutM from the Gh·G or Sp·G pair, but not from Gh·C and Sp·C pairs. In contrast, MutY does not significantly inhibit Nei for any Gh(Sp) base pair. These results suggest a protective function for MutY in preventing mutation as a result of A (G) incorporation opposite Gh(Sp) during DNA replication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Double-strand break (DSB) repair and DNA replication are tightly linked in the life cycle of bacteriophage T4. Indeed, the major mode of phage DNA replication depends on recombination proteins and can be stimulated by DSBs. DSB-stimulated DNA replication is dramatically demonstrated when T4 infects cells carrying two plasmids that share homology. A DSB on one plasmid triggered extensive replication of the second plasmid, providing a useful model for T4 recombination-dependent replication (RDR). This system also provides a view of DSB repair in T4-infected cells and revealed that the DSB repair products had been replicated in their entirety by the T4 replication machinery. We analyzed the detailed structure of these products, which do not fit the simple predictions of any of three models for DSB repair. We also present evidence that the T4 RDR system functions to restart stalled or inactivated replication forks. First, we review experiments involving antitumor drug-stabilized topoisomerase cleavage complexes. The results suggest that forks blocked at cleavage complexes are resolved by recombinational repair, likely involving RDR. Second, we show here that the presence of a T4 replication origin on one plasmid substantially stimulated recombination events between it and a homologous second plasmid that did not contain a T4 origin. Furthermore, replication of the second plasmid was increased when the first plasmid contained the T4 origin. Our interpretation is that origin-initiated forks become inactivated at some frequency during replication of the first plasmid and are then restarted via RDR on the second plasmid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies of recombination-dependent replication (RDR) in the T4 system have revealed the critical roles played by mediator proteins in the timely and productive loading of specific enzymes onto single-stranded DNA (ssDNA) during phage RDR processes. The T4 recombination mediator protein, uvsY, is necessary for the proper assembly of the T4 presynaptic filament (uvsX recombinase cooperatively bound to ssDNA), leading to the recombination-primed initiation of leading strand DNA synthesis. In the lagging strand synthesis component of RDR, replication mediator protein gp59 is required for the assembly of gp41, the DNA helicase component of the T4 primosome, onto lagging strand ssDNA. Together, uvsY and gp59 mediate the productive coupling of homologous recombination events to the initiation of T4 RDR. UvsY promotes presynaptic filament formation on 3′ ssDNA-tailed chromosomes, the physiological primers for T4 RDR, and recent results suggest that uvsY also may serve as a coupling factor between presynapsis and the nucleolytic resection of double-stranded DNA ends. Other results indicate that uvsY stabilizes uvsX bound to the invading strand, effectively preventing primosome assembly there. Instead, gp59 directs primosome assembly to the displaced strand of the D loop/replication fork. This partitioning mechanism enforced by the T4 recombination/replication mediator proteins guards against antirecombination activity of the helicase component and ensures that recombination intermediates formed by uvsX/uvsY will efficiently be converted into semiconservative DNA replication forks. Although the major mode of T4 RDR is semiconservative, we present biochemical evidence that a conservative “bubble migration” mode of RDR could play a role in lesion bypass by the T4 replication machinery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA polymerase V, composed of a heterotrimer of the DNA damage-inducible UmuC and UmuD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{^{\prime}}}}\end{equation*}\end{document} proteins, working in conjunction with RecA, single-stranded DNA (ssDNA)-binding protein (SSB), β sliding clamp, and γ clamp loading complex, are responsible for most SOS lesion-targeted mutations in Escherichia coli, by catalyzing translesion synthesis (TLS). DNA polymerase II, the product of the damage-inducible polB (dinA ) gene plays a pivotal role in replication-restart, a process that bypasses DNA damage in an error-free manner. Replication-restart takes place almost immediately after the DNA is damaged (≈2 min post-UV irradiation), whereas TLS occurs after pol V is induced ≈50 min later. We discuss recent data for pol V-catalyzed TLS and pol II-catalyzed replication-restart. Specific roles during TLS for pol V and each of its accessory factors have been recently determined. Although the precise molecular mechanism of pol II-dependent replication-restart remains to be elucidated, it has recently been shown to operate in conjunction with RecFOR and PriA proteins.