146 resultados para Amino acid specificity


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A phenotypic cloning approach was used to isolate a canine cDNA encoding Forssman glycolipid synthetase (FS; UDP-GalNAc:globoside alpha-1,3-N-acetylgalactosaminyltransferase; EC 2.4.1.88). The deduced amino acid sequence of FS demonstrates extensive identity to three previously cloned glycosyltransferases, including the enzymes responsible for synthesis of histo-blood group A and B antigens. These three enzymes, like FS, catalyze the addition of either N-acetylgalactosamine (GalNAc) or galactose (Gal) in alpha-1,3-linkage to their respective substrates. Despite the high degree of sequence similarity among the transferases, we demonstrate that the FS cDNA encodes an enzyme capable of synthesizing Forssman glycolipid, and demonstrates no GalNAc or Gal transferase activity when closely related substrates are examined. Thus, the FS cDNA is a novel member of the histo-blood group ABO gene family that encodes glycosyltransferases with related but distinct substrate specificity. Cloning of the FS cDNA will allow a detailed dissection of the roles Forssman glycolipid plays in cellular differentiation, development, and malignant transformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The question of whether proteins originate from random sequences of amino acids is addressed. A statistical analysis is performed in terms of blocked and random walk values formed by binary hydrophobic assignments of the amino acids along the protein chains. Theoretical expectations of these variables from random distributions of hydrophobicities are compared with those obtained from functional proteins. The results, which are based upon proteins in the SWISS-PROT data base, convincingly show that the amino acid sequences in proteins differ from what is expected from random sequences in a statistically significant way. By performing Fourier transforms on the random walks, one obtains additional evidence for nonrandomness of the distributions. We have also analyzed results from a synthetic model containing only two amino acid types, hydrophobic and hydrophilic. With reasonable criteria on good folding properties in terms of thermodynamical and kinetic behavior, sequences that fold well are isolated. Performing the same statistical analysis on the sequences that fold well indicates similar deviations from randomness as for the functional proteins. The deviations from randomness can be interpreted as originating from anticorrelations in terms of an Ising spin model for the hydrophobicities. Our results, which differ from some previous investigations using other methods, might have impact on how permissive with respect to sequence specificity protein folding process is-only sequences with nonrandom hydrophobicity distributions fold well. Other distributions give rise to energy landscapes with poor folding properties and hence did not survive the evolution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nearly all metazoan homeodomains (HDs) possess DNA binding targets that are related by the presence of a TAAT sequence. We use an in vitro genetic DNA binding site selection assay to refine our understanding of the amino acid determinants for the recognition of the TAAT site. Superimposed upon the conserved ability of metazoan HDs to recognize a TAAT core is a difference in their preference for the bases that lie immediately 3' to it. Amino acid position 50 of the HD has been shown to discriminate among these base pairs, and structural studies have suggested that water-mediated hydrogen bonds and van der Waals contacts underlie for this ability. Here, we show that each of six amino acids tested at position 50 can confer a distinct DNA binding specificity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A human cDNA sequence homologous to human deoxycytidine kinase (dCK; EC 2.7.1.74) was identified in the GenBank sequence data base. The longest open reading frame encoded a protein that was 48% identical to dCK at the amino acid level. The cDNA was expressed in Escherichia coli and shown to encode a protein with the same substrate specificity as described for the mitochondrial deoxyguanosine kinase (dGK; EC 2.7.1.113). The N terminus of the deduced amino acid sequence had properties characteristic for a mitochondrial translocation signal, and cleavage at a putative mitochondrial peptidase cleavage site would give a mature protein size of 28 kDa. Northern blot analysis determined the length of dGK mRNA to 1.3 kbp with no cross-hybridization to the 2.8-kbp dCK mRNA. dGK mRNA was detected in all tissues investigated with the highest expression levels in muscle, brain, liver, and lymphoid tissues. Alignment of the dGK and herpes simplex virus type 1 thymidine kinase amino acid sequences showed that five regions, including the substrate-binding pocket and the ATP-binding glycine loop, were also conserved in dGK. To our knowledge, this is the first report of a cloned mitochondrial nucleoside kinase and the first demonstration of a general sequence homology between two mammalian deoxyribonucleoside kinases. Our findings suggest that dCK and dGK are evolutionarily related, as well as related to the family of herpes virus thymidine kinases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In vivo all-trans-retinoic acid (ATRA), a differentiation inducer, is capable of causing clinical remission in about 90% of patients with acute promyelocytic leukemia (APL). The molecular basis for the differentiation of APL cells after treatment with ATRA remains obscure and may involve genes other than the known retinoid nuclear transcription factors. We report here the ATRA-induced gene expression in a cell line (NB4) derived from a patient with APL. By differential display-PCR, we isolated and characterized a novel gene (RIG-E) whose expression is up-regulated by ATRA. The gene is 4.0 kb long, consisting of four exons and three introns, and is localized on human chromosome region 8q24. The deduced amino acid sequence predicts a cell surface protein containing 20 amino acids at the N-terminal end corresponding to a signal peptide and an extracellular sequence containing 111 amino acids. The RIG-E coded protein shares some homology with CD59 and with a number of growth factor receptors. It shares high sequence homology with the murine LY-6 multigene family, whose members are small cysteine-rich proteins differentially expressed in several hematopoietic cell lines and appear to function in signal transduction. It seems that so far RIG-E is the closest human homolog of the LY-6 family. Expression of RIG-E is not restricted to myeloid differentiation, because it is also present in thymocytes and in a number of other tissues at different levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The possible relationship of selenium to immunological function which has been suggested for decades was investigated in studies on selenium metabolism in human T cells. One of the major 75Se-labeled selenoproteins detected was purified to homogeneity and shown to be a homodimer of 55-kDa subunits. Each subunit contained about 1 FAD and at least 0.74 Se. This protein proved to be thioredoxin reductase (TR) on the basis of its catalytic activities, cross-reactivity with anti-rat liver TR antibodies, and sequence identities of several tryptic peptides with the published deduced sequence of human placental TR. Physicochemical characteristics of T-cell TR were similar to those of a selenocysteine (Secys)-containing TR recently isolated from human lung adenocarcinoma cells. The sequence of a 12-residue 75Se-labeled tryptic peptide from T-cell TR was identical with a C-terminal-deduced sequence of human placental TR except that Secys was present in the position corresponding to TGA, previously thought to be the termination codon, and this was followed by Gly-499, the actual C-terminal amino acid. The presence of the unusual conserved Cys-Secys-Gly sequence at the C terminus of TR in addition to the redox active cysteines of the Cys-Val-Asn-Val-Gly-Cys motif in the FAD-binding region may account for the peroxidase activity and the relatively low substrate specificity of mammalian TRs. The finding that T-cell TR is a selenoenzyme that contains Se in a conserved C-terminal region provides another example of the role of selenium in a major antioxidant enzyme system (i.e., thioredoxin-thioredoxin reductase), in addition to the well-known glutathione peroxidase enzyme system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural killer (NK) cells express clonally distributed receptors for different groups of HLA class I alleles. The Z27 monoclonal antibody described in this study recognizes a p70 receptor specific for HLA-B alleles belonging to the Bw4 supertypic specificity. Single amino acid substitutions in the peptide-binding groove of HLA-B2705 molecules influenced the recognition by some, but not all, p7O/Z27+ clones. This suggests the existence of a limited polymorphism within the p7O family of receptors. The pattern of reactivity of monoclonal antibody Z27 revealed that Bw4-specific receptors may be expressed alone or in combination with different (GL183 and/or EB6) p58 molecules. Analysis of NK clones coexpressing p58 and p7O receptors allowed us to demonstrate that the two molecules represent physically and functionally independent receptors. The expression of p7O molecules either alone or in combination with EB6 molecules provided the molecular basis for understanding the cytolytic pattern of two previously defined groups of "alloreactive" NK cell clones ("group 3" and "group 5").

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Shc adaptor protein contains two phosphotyrosine [Tyr(P)]binding modules--an N-terminal Tyr(P) binding (PTB) domain and a C-terminal Src homology 2 (SH2) domain. We have compared the ability of the Shc PTB domain to bind the receptors for nerve growth factor and insulin, both of which contain juxtamembrane Asn-Pro-Xaa-Tyr(P) motifs implicated in PTB binding. The Shc PTB domain binds with high affinity to a phosphopeptide corresponding to the nerve growth factor receptor Tyr-490 autophosphorylation site. Analysis of individual residues within this motif indicates that the Asn at position -3 [with respect to Tyr(P)], in addition to Tyr(P), is critical for PTB binding, while the Pro at position -2 plays a less significant role. A hydrophobic amino acid 5 residues N-terminal to the Tyr(P) is also essential for high-affinity binding. In contrast, the Shc PTB domain does not bind stably to the Asn-Pro-Xaa-Tyr(P) site at Tyr-960 in the activated insulin receptor, which has a polar residue (Ser) at position -5. Substitution of this Ser at position -5 with Ile markedly increased binding of the insulin receptor Tyr-960 phosphopeptide to the PTB domain. These results suggest that while the Shc PTB domain recognizes a core sequence of Asn-Pro-Xaa-Tyr(P), its binding affinity is modulated by more N-terminal residues in the ligand, which therefore contribute to the specificity of PTB-receptor interactions. An analysis of residues in the Shc PTB domain required for binding to Tyr(P) sites identified a specific and evolutionarily conserved Arg (Arg-175) that is uniquely important for ligand binding and is potentially involved in Tyr(P) recognition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Substance P (SP) is a neuropeptide that mediates multiple physiological responses including transmission of painful stimuli and inflammation via an interaction with a receptor of known primary sequence. To identify the regions of the SP receptor, also termed the NK-1 receptor, involved in peptide recognition, we are using analogues of SP containing the photoreactive amino acid p-benzoyl-L-phenylalanine (Bpa). In the present study, we used radioiodinated Bpa8-SP to covalently label with high efficiency the rat SP receptor expressed in a transfected mammalian cell line. To identify the amino acid residue that serves as the site of covalent attachment, a membrane preparation of labeled receptor was subjected to partial enzymatic cleavage by trypsin. A major digestion product of 22 kDa was identified. Upon reduction with 2-mercaptoethanol the mass of this product decreased to 14 kDa. The 22-kDa tryptic fragment was purified in excellent yield by preparative SDS/PAGE under nonreducing conditions. Subcleavage with Staphylococcus aureus V8 protease and endoproteinase ArgC yielded fragments of 8.2 and 9.0 kDa, respectively. Upon reductive cleavage, the V8 protease fragment decreased to 3.0 kDa while the endoproteinase ArgC fragment decreased to 3.2 kDa. Taking into consideration enzyme specificity, molecular size, determination of the presence or absence of N-glycosylation sites, and recognition by antibodies to specific sequences of the SP receptor, the V8 protease fragment is Thr-173 to Glu-183, while the endoproteinase ArgC fragment is Val-178 to Arg-190. These two fragments share the common sequence Val-Val-Cys-Met-Ile-Glu (residues 178-183). The site of covalent attachment of radioiodinated Bpa8-SP is thus restricted to a residue within this overlap sequence. The data presented here also establish that the cysteine residue in this sequence Cys-180, which is positioned in the middle of the second extracellular loop, participates in a disulfide bond that links the first and second extracellular loops of the receptor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several di- and tripeptides containing protected purine (adenine) and pyrimidine (thymine) residues on their side chains were synthesized. The parent amino acids alpha, alpha-dialkylated in a symmetrical manner. An effective coupling procedure was developed for these sterically hindered amino acids: the fluoren-9-ylmethyloxycarbonyl-protected amino acid was dehydrated to its oxazolinone form, which was coupled in good yields with amino esters in hot tetrachloroethane.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In most plants amino acids represent the major transport form for organic nitrogen. A sensitive selection system in yeast mutants has allowed identification of a previously unidentified amino acid transporter in Arabidopsis. AAT1 encodes a hydrophobic membrane protein with 14 membrane-spanning regions and shares homologies with the ecotropic murine leukemia virus receptor, a bifunctional protein serving also as a cationic amino acid transporter in mammals. When expressed in yeast, AAT1 mediates high-affinity transport of basic amino acids, but to a lower extent also recognizes acidic and neutral amino acids. AAT1-mediated histidine transport is sensitive to protonophores and occurs against a concentration gradient, indicating that AAT1 may function as a proton symporter. AAT1 is specifically expressed in major veins of leaves and roots and in various floral tissues--i.e., and developing seeds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An in vitro enzyme system for the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been established by the combined use of an improved isolation medium and jasmonic acid-induced etiolated seedlings of Sinapis alba L. An 8-fold induction of de novo biosynthesis of the L-tyrosine-derived p-hydroxybenzylglucosinolate was obtained in etiolated S. alba seedlings upon treatment with jasmonic acid. Formation of inhibitory glucosinolate degradation products upon tissue homogenization was prevented by inactivation of myrosinase by addition of 100 mM ascorbic acid to the isolation buffer. The biosynthetically active microsomal enzyme system converted L-tyrosine into p-hydroxyphenylacetaldoxime and the production of oxime was strictly dependent on NADPH. The Km and Vmax values of the enzyme system were 346 microM and 538 pmol per mg of protein per h, respectively. The nature of the enzyme catalyzing the conversion of amino acid to oxime in the biosynthesis of glucosinolates has been subject of much speculation. In the present paper, we demonstrate the involvement of cytochrome P450 by photoreversible inhibition by carbon monoxide. The inhibitory effect of numerous cytochrome P450 inhibitors confirms the involvement of cytochrome P450. This provides experimental documentation of similarity between the enzymes converting amino acids into the corresponding oximes in the biosynthesis of glucosinolates and cyanogenic glycosides.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A family of interferon (IFN) regulatory factors (IRFs) have been shown to play a role in transcription of IFN genes as well as IFN-stimulated genes. We report the identification of a member of the IRF family which we have named IRF-3. The IRF-3 gene is present in a single copy in human genomic DNA. It is expressed constitutively in a variety of tissues and no increase in the relative steady-state levels of IRF-3 mRNA was observed in virus-infected or IFN-treated cells. The IRF-3 gene encodes a 50-kDa protein that binds specifically to the IFN-stimulated response element (ISRE) but not to the IRF-1 binding site PRD-I. Overexpression of IRF-3 stimulates expression of the IFN-stimulated gene 15 (ISG15) promoter, an ISRE-containing promoter. The murine IFNA4 promoter, which can be induced by IRF-1 or viral infection, is not induced by IRF-3. Expression of IRF-3 as a Gal4 fusion protein does not activate expression of a chloramphenicol acetyltransferase reporter gene containing repeats of the Gal4 binding sites, indicating that this protein does not contain the transcription transactivation domain. The high amino acid homology between IRF-3 and ISG factor 3 gamma polypeptide (ISGF3 gamma) and their similar binding properties indicate that, like ISGF3 gamma, IRF-3 may activate transcription by complex formation with other transcriptional factors, possibly members of the Stat family. Identification of this ISRE-binding protein may help us to understand the specificity in the various Stat pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ionotropic receptors for gamma-aminobutyric acid (GABA) are important to inhibitory neurotransmission in the mammalian retina, mediating GABAA and GABAC responses. In many species, these responses are blocked by the convulsant picrotoxinin (PTX), although the mechanism of block is not fully understood. In contrast, GABAC responses in the rat retina are extremely resistant to PTX. We hypothesized that this difference could be explained by molecular characterization of the receptors underlying the GABAC response. Here we report the cloning of two rat GABA receptor subunits, designated r rho 1 and r rho 2 after their previously identified human homologues. When coexpressed in Xenopus oocytes, r rho 1/r rho 2 heteromeric receptors mimicked PTX-resistant GABAC responses of the rat retina. PTX resistance is apparently conferred in native heteromeric receptors by r rho 2 subunits since homomeric r rho 1 receptors were sensitive to PTX; r rho 2 subunits alone were unable to form functional homomeric receptors. Site-directed mutagenesis confirmed that a single amino acid residue in the second membrane-spanning region (a methionine in r rho 2 in place of a threonine in r rho 1) is the predominant determinant of PTX resistance in the rat receptor. This study reveals not only the molecular mechanism underlying PTX blockade of GABA receptors but also the heteromeric nature of native receptors in the rat retina that underlie the PTX-resistant GABAC response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The homeodomain is a 60-amino acid module which mediates critical protein-DNA and protein-protein interactions for a large family of regulatory proteins. We have used structure-based design to analyze the ability of the Oct-1 homeodomain to nucleate an enhancer complex. The Oct-1 protein regulates herpes simplex virus (HSV) gene expression by participating in the formation of a multiprotein complex (C1 complex) which regulates alpha (immediate early) genes. We recently described the design of ZFHD1, a chimeric transcription factor containing zinc fingers 1 and 2 of Zif268, a four-residue linker, and the Oct-1 homeodomain. In the presence of alpha-transinduction factor and C1 factor, ZFHD1 efficiently nucleates formation of the C1 complex in vitro and specifically activates gene expression in vivo. The sequence specificity of ZFHD1 recruits C1 complex formation to an enhancer element which is not efficiently recognized by Oct-1. ZFHD1 function depends on the recognition of the Oct-1 homeodomain surface. These results prove that the Oct-1 homeodomain mediates all the protein-protein interactions that are required to efficiently recruit alpha-transinduction factor and C1 factor into a C1 complex. The structure-based design of transcription factors should provide valuable tools for dissecting the interactions of DNA-bound domains in other regulatory circuits.