168 resultados para nucleotides
Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism
Resumo:
Somatic mosaicism caused by in vivo reversion of inherited mutations has been described in several human genetic disorders. Back mutations resulting in restoration of wild-type sequences and second-site mutations leading to compensatory changes have been shown in mosaic individuals. In most cases, however, the precise genetic mechanisms underlying the reversion events have remained unclear, except for the few instances where crossing over or gene conversion have been demonstrated. Here, we report a patient affected with Wiskott–Aldrich syndrome (WAS) caused by a 6-bp insertion (ACGAGG) in the WAS protein gene, which abrogates protein expression. Somatic mosaicism was documented in this patient whose majority of T lymphocytes expressed nearly normal levels of WAS protein. These lymphocytes were found to lack the deleterious mutation and showed a selective growth advantage in vivo. Analysis of the sequence surrounding the mutation site showed that the 6-bp insertion followed a tandem repeat of the same six nucleotides. These findings strongly suggest that DNA polymerase slippage was the cause of the original germ-line insertion mutation in this family and that the same mechanism was responsible for its deletion in one of the propositus T cell progenitors, thus leading to reversion mosaicism.
Resumo:
All eukaryotic DNA transposons reported so far belong to a single category of elements transposed by the so-called “cut-and-paste” mechanism. Here, we report a previously unknown category of eukaryotic DNA transposons, Helitron, which transpose by rolling-circle replication. Autonomous Helitrons encode a 5′-to-3′ DNA helicase and nuclease/ligase similar to those encoded by known rolling-circle replicons. Helitron-like transposons have conservative 5′-TC and CTRR-3′ termini and do not have terminal inverted repeats. They contain 16- to 20-bp hairpins separated by 10–12 nucleotides from the 3′-end and transpose precisely between the 5′-A and T-3′, with no modifications of the AT target sites. Together with their multiple diverged nonautonomous descendants, Helitrons constitute ≈2% of both the Arabidopsis thaliana and Caenorhabditis elegans genomes and also colonize the Oriza sativa genome. Sequence conservation suggests that Helitrons continue to be transposed.
Resumo:
The intercistronic region between the maturation and coat-protein genes of RNA phage MS2 contains important regulatory and structural information. The sequence participates in two adjacent stem-loop structures, one of which, the coat-initiator hairpin, controls coat-gene translation and is thus under strong selection pressure. We have removed 19 out of the 23 nucleotides constituting the intercistronic region, thereby destroying the capacity of the phage to build the two hairpins. The deletion lowered coat-protein yield more than 1000-fold, and the titer of the infectious clone carrying the deletion dropped 10 orders of magnitude as compared with the wild type. Two types of revertants were recovered. One had, in two steps, recruited 18 new nucleotides that served to rebuild the two hairpins and the lost Shine-Dalgarno sequence. The other type had deleted an additional six nucleotides, which allowed the reconstruction of the Shine-Dalgarno sequence and the initiator hairpin, albeit by sacrificing the remnants of the other stem-loop. The results visualize the immense genetic repertoire created by, what appears as, random RNA recombination. It would seem that in this genetic ensemble every possible new RNA combination is represented.
Resumo:
The alcohol dehydrogenase (Adh; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) gene family has two or three loci in a broad array of angiosperm species. The relative stability in the number of Adh loci led Gottlieb [Gottlieb, L. D. (1982) Science 216, 373-380] to propose that the Adh gene family arose from an ancient gene duplication. In this study, the isolation of three loci from the California fan palm (Washingtonia robusta) is reported. The three loci from palm are highly diverged. One palm Adh gene, referred to here as adhB, has been completely sequenced, including 950 nucleotides of the upstream regulatory region. For the second locus, adhA, 81% of the exon sequence is complete. Both show the same basic structure as grass Adh genes in terms of intron number and intron location. The third locus, adhC, for which only a small amount of sequence is available (12% of exon sequence) appears to be more highly diverged. Comparison of the Adh gene families from palms and grasses shows that the adh1 and adh2 genes of grasses, and the adhA and adhB genes of palms, arose by duplication following the divergence of the two families. This finding suggests that the multiple Adh loci in different monocot lineages are not the result of a single ancestral duplication but, rather, of multiple duplication events.
Resumo:
Telomerase is a ribonucleoprotein enzyme that uses its internal RNA moiety as a template for synthesis of telomeric repeats at chromosome ends. Here we report the purification of telomerase from Euplotes aediculatus by affinity chromatography with antisense 2'-O-methyl oligonucleotides, a method that was developed for small nuclear ribonucleoprotein particles (snRNPs). Elution of bound ribonucleoprotein from the antisense oligonucleotide under nondenaturing conditions was achieved by a novel approach, using a displacement oligonucleotide. Polypeptides of 120 kDa and 43 kDa (a doublet) copurify with the active telomerase and appear stoichiometric with telomerase RNA. A simple model for DNA end replication predicts that after semiconservative DNA replication, telomerase will extend the newly synthesized, blunt-ended leading strand. We show that purified Euplotes telomerase has no activity with blunt-ended primers. Instead, efficient extension requires 4 to 6 single-stranded nucleotides at the 3' end. Therefore, this model predicts the existence of other activities such as helicases or nucleases that generate a single-stranded 3' end from a blunt end, thus activating the end for telomerase extension.
Resumo:
The whole genome sequence (1.83 Mbp) of Haemophilus influenzae strain Rd was searched to identify tandem oligonucleotide repeat sequences. Loss or gain of one or more nucleotide repeats through a recombination-independent slippage mechanism is known to mediate phase variation of surface molecules of pathogenic bacteria, including H. influenzae. This facilitates evasion of host defenses and adaptation to the varying microenvironments of the host. We reasoned that iterative nucleotides could identify novel genes relevant to microbe-host interactions. Our search of the Rd genome sequence identified 9 novel loci with multiple (range 6-36, mean 22) tandem tetranucleotide repeats. All were found to be located within putative open reading frames and included homologues of hemoglobin-binding proteins of Neisseria, a glycosyltransferase (IgtC gene product) of Neisseria, and an adhesin of Yersinia. These tetranucleotide repeat sequences were also shown to be present in two other epidemiologically different H. influenzae type b strains, although the number and distribution of repeats was different. Further characterization of the IgtC gene showed that it was involved in phenotypic switching of a lipopolysaccharide epitope and that this variable expression was associated with changes in the number of tetranucleotide repeats. Mutation of IgtC resulted in attenuated virulence of H. influenzae in an infant rat model of invasive infection. These data indicate the rapidity, economy, and completeness with which whole genome sequences can be used to investigate the biology of pathogenic bacteria.
Resumo:
It has been reported that His-119 of ribonuclease A plays a major role as an imidazolium ion acid catalyst in the cyclization/cleavage of normal dinucleotides but that it is not needed for the cyclization/cleavage of 3'-uridyl p-nitrophenyl phosphate. We see that this is also true for simple buffer catalysis, where imidazole (as in His-12 of the enzyme), but not imidazolium ion, plays a significant catalytic role with the nitrophenyl substrate, but both are catalytic for normal dinucleotides such as uridyluridine. Rate studies show that the enzyme catalyzes the cyclization of the nitrophenylphosphate derivative 47,000,000 times less effectively (kcat/kuncat) than it does uridyladenosine, indicating that approximately 50% of the catalytic free energy change is lost with this substrate. This suggests that the nitrophenyl substrate is not correctly bound to take full advantage of the catalytic groups of the enzyme and is thus not a good guide to the mechanism used by normal nucleotides. The published data on kinetic effects with ribonuclease A of substituting thiophosphate groups for the phosphate groups of normal substrates has been discussed elsewhere, and it was argued that these effects are suggestive of the classical mechanism for ribonuclease action, not the novel mechanism we have recently proposed. The details of these rate effects, including stereochemical preferences in the thiophosphate series, can be invoked as support for our newer mechanism.
Resumo:
p53 is a multifunctional tumor suppressor protein involved in the negative control of cell growth. Mutations in p53 cause alterations in cellular phenotype, including immortalization, neoplastic transformation, and resistance to DNA-damaging drugs. To help dissect distinct functions of p53, a set of genetic suppressor elements (GSEs) capable of inducing different p53-related phenotypes in rodent embryo fibroblasts was isolated from a retroviral library of random rat p53 cDNA fragments. All the GSEs were 100-300 nucleotides long and were in the sense orientation. They fell into four classes, corresponding to the transactivator (class I), DNA-binding (class II), and C-terminal (class III) domains of the protein and the 3'-untranslated region of the mRNA (class IV). GSEs in all four classes promoted immortalization of primary cells, but only members of classes I and III cooperated with activated ras to transform cells, and only members of class III conferred resistance to etoposide and strongly inhibited transcriptional transactivation by p53. These observations suggest that processes related to control of senescence, response to DNA damage, and transformation involve different functions of the p53 protein and furthermore indicate a regulatory role for the 3'-untranslated region of p53 mRNA.
Resumo:
In the previously determined structure of mitochondrial F1-ATPase determined with crystals grown in the presence of adenylyl-imidodiphosphate (AMP-PNP) and ADP, the three catalytic beta-subunits have different conformations and nucleotide occupancies. AMP-PNP and ADP are bound to subunits beta TP and beta DP, respectively, and the third beta-subunit (beta E) has no bound nucleotide. The efrapeptins are a closely related family of modified linear peptides containing 15 amino acids that inhibit both ATP synthesis and hydrolysis by binding to the F1 catalytic domain of F1F0-ATP synthase. In crystals of F1-ATPase grown in the presence of both nucleotides and inhibitor, efrapeptin is bound to a unique site in the central cavity of the enzyme. Its binding is associated with small structural changes in side chains of F1-ATPase around the binding pocket. Efrapeptin makes hydrophobic contacts with the alpha-helical structure in the gamma-subunit, which traverses the cavity, and with subunit beta E and the two adjacent alpha-subunits. Two intermolecular hydrogen bonds could also form. Intramolecular hydrogen bonds probably help to stabilize efrapeptin's two domains (residues 1-6 and 9-15, respectively), which are connected by a flexible region (beta Ala-7 and Gly-8). Efrapeptin appears to inhibit F1-ATPase by blocking the conversion of subunit beta E to a nucleotide binding conformation, as would be required by an enzyme mechanism involving cyclic interconversion of catalytic sites.
Resumo:
Expression of Thermus aquaticus (Taq) DNA polymerase I (pol I) in Escherichia, coli complements the growth defect caused by a temperature-sensitive mutation in the host pol I. We replaced the nucleotide sequence encoding amino acids 659-671 of the O-helix of Taq DNA pol I, corresponding to the substrate binding site, with an oligonucleotide containing random nucleotides. Functional Taq pol I mutants were selected based on colony formation at the nonpermissive temperature. By using a library with 9% random substitutions at each of 39 positions, we identified 61 active Taq pol I mutants, each of which contained from one to four amino acid substitutions. Some amino acids, such as alanine-661 and threonine-664, were tolerant of several or even many diverse replacements. In contrast, no replacements or only conservative replacements were identified at arginine-659, lysine-663, and tyrosine-671. By using a library with totally random nucleotides at five different codons (arginine-659, arginine-660, lysine-663, phenylalanine-667, and glycine-668), we confirmed that arginine-659 and lysine-663 were immutable, and observed that only tyrosine substituted for phenylalanine-667. The two immutable residues and the two residues that tolerate only highly conservative replacements lie on the side of O-helix facing the incoming deoxynucleoside triphosphate, as determined by x-ray analysis. Thus, we offer a new approach to assess concordance of the active conformation of an enzyme, as interpreted from the crystal structure, with the active conformation inferred from in vivo function.
Resumo:
Few promoters are active at high levels in all cells. Of these, the majority encode structural RNAs transcribed by RNA polymerases I or III and are not accessible for the expression of proteins. An exception are the small nuclear RNAs (snRNAs) transcribed by RNA polymerase II. Although snRNA biosynthesis is unique and thought not to be compatible with synthesis of functional mRNA, we have tested these promoters for their ability to express functional mRNAs. We have used the murine U1a and U1b snRNA gene promoters to express the Escherichia coli lacZ gene and the human alpha-globin gene from either episomal or integrated templates by transfection, or infection into a variety of mammalian cell types. Equivalent expression of beta-galactosidase was obtained from < 250 nucleotides of 5'-flanking sequence containing the complete promoter of either U1 snRNA gene or from the 750-nt cytomegalovirus promoter and enhancer regions. The mRNA was accurately initiated at the U1 start site, efficiently spliced and polyadenylylated, and localized to polyribosomes. Recombinant adenovirus containing the U1b-lacZ chimeric gene transduced and expressed beta-galactosidase efficiently in human 293 cells and airway epithelial cells in culture. Viral vectors containing U1 snRNA promoters may be an attractive alternative to vectors containing viral promoters for persistent high-level expression of therapeutic genes or proteins.
Resumo:
Aldose reductase (EC 1.1.1.21) catalyzes the NADPH-mediated conversion of glucose to sorbitol. The hyperglycemia of diabetes increases sorbitol production primarily through substrate availability and is thought to contribute to the pathogenesis of many diabetic complications. Increased sorbitol production can also occur at normoglycemic levels via rapid increases in aldose reductase transcription and expression, which have been shown to occur upon exposure of many cell types to hyperosmotic conditions. The induction of aldose reductase transcription and the accumulation of sorbitol, an organic osmolyte, have been shown to be part of the physiological osmoregulatory mechanism whereby renal tubular cells adjust to the intraluminal hyperosmolality during urinary concentration. Previously, to explore the mechanism regulating aldose reductase levels, we partially characterized the human aldose reductase gene promoter present in a 4.2-kb fragment upstream of the transcription initiation start site. A fragment (-192 to +31 bp) was shown to contain several elements that control the basal expression of the enzyme. In this study, we examined the entire 4.2-kb human AR gene promoter fragment by deletion mutagenesis and transfection studies for the presence of osmotic response enhancer elements. An 11-bp nucleotide sequence (TGGAAAATTAC) was located 3.7 kb upstream of the transcription initiation site that mediates hypertonicity-responsive enhancer activity. This osmotic response element (ORE) increased the expression of the chloramphenicol acetyltransferase reporter gene product 2-fold in transfected HepG2 cells exposed to hypertonic NaCl media as compared with isoosmotic media. A more distal homologous sequence is also described; however, this sequence has no osmotic enhancer activity in transfected cells. Specific ORE mutant constructs, gel shift, and DNA fragment competition studies confirm the nature of the element and identify specific nucleotides essential for enhancer activity. A plasmid construct containing three repeat OREs and a heterologous promoter increased expression 8-fold in isoosmotic media and an additional 4-fold when the transfected cells are subjected to hyperosmotic stress (total approximately 30-fold). These findings will permit future studies to identify the transcription factors involved in the normal regulatory response mechanism to hypertonicity and to identify whether and how this response is altered in a variety of pathologic states, including diabetes.
Resumo:
Chlorarachniophytes are amoeboid algae with chlorophyll a and b containing plastids that are surrounded by four membranes instead of two as in plants and green algae. These extra membranes form important support for the hypothesis that chlorarachniophytes have acquired their plastids by the ingestion of another eukaryotic plastid-containing alga. Chlorarachniophytes also contain a small nucleus-like structure called the nucleomorph situated between the two inner and the two outer membranes surrounding the plastid. This nucleomorph is a remnant of the endosymbiont's nucleus and encodes, among other molecules, small subunit ribosomal RNA. Previous phylogenetic analyses on the basis of this molecule provided unexpected and contradictory evidence for the origin of the chlorarachniophyte endosymbiont. We developed a new method for measuring the substitution rates of the individual nucleotides of small subunit ribosomal RNA. From the resulting substitution rate distribution, we derived an equation that gives a more realistic relationship between sequence dissimilarity and evolutionary distance than equations previously available. Phylogenetic trees constructed on the basis of evolutionary distances computed by this new method clearly situate the chlorarachniophyte nucleomorphs among the green algae. Moreover, this relationship is confirmed by transversion analysis of the Chlorarachnion plastid small subunit ribosomal RNA.
Resumo:
Structures of Watson-Crick base paired 15-nucleobase oligomer strands in A-type or B-type conformation in which one strand [a strand of alternating nucleotide and riboacetal thymidine nucleoside (RT) units, RP] is DNA and the other is composed of alternating nucleotides and riboacetal nucleosides have been studied by molecular mechanics. Analogously, oligomer strands of RNA in place of DNA have been modeled. The calculations indicate that the RP strand is more stable when complexed in an A-type duplex relative to a B-type form and that this conformational preference is presumably due to the more uniform nature of the former. Nearly planar ribose rings were more commonly observed in the minimized structures of the B-type DNA.RP duplexes as compared with A-type duplexes, despite the fact that planar ribofuranose rings are known to be energetically unfavorable in oligonucleotides. Computed relative stabilities of all duplexes containing the RP strand suggest that such heteroduplexes are less stable than the corresponding double-stranded DNA and double-stranded RNA species. These findings are in agreement with experimental results which show, when equivalent sequences were compared, that a DNA.RNA control forms a more stable duplex than RP hound to a complementary single-stranded RNA strand. In contrast, molecular mechanics studies of complementary triple-helical (DNA)2.RP, (DNA)2.DNA, and (DNA)2.RNA structures indicate that the binding of RP as a Hoogsteen strand stabilizes the underlying duplex to a greater extent compared with native oligonucleotides. These calculations suggest that puckering of the ribose ring in the riboacetal linkage leads to a more favorable interaction with a complementary nucleic acid target than the proposed planar geometry and that this puckering may account for the enhanced binding of RP to a double-stranded target.
Resumo:
RNA polymerases encounter specific DNA sites at which RNA chain elongation takes place in the absence of enzyme translocation in a process called discontinuous elongation. For RNA polymerase II, at least some of these sequences also provoke transcriptional arrest where renewed RNA polymerization requires elongation factor SII. Recent elongation models suggest the occupancy of a site within RNA polymerase that accommodates nascent RNA during discontinuous elongation. Here we have probed the extent of nascent RNA extruded from RNA polymerase II as it approaches, encounters, and departs an arrest site. Just upstream of an arrest site, 17-19 nucleotides of the RNA 3'-end are protected from exhaustive digestion by exogenous ribonuclease probes. As RNA is elongated to the arrest site, the enzyme does not translocate and the protected RNA becomes correspondingly larger, up to 27 nucleotides in length. After the enzyme passes the arrest site, the protected RNA is again the 18-nucleotide species typical of an elongation-competent complex. These findings identify an extended RNA product groove in arrested RNA polymerase II that is probably identical to that emptied during SII-activated RNA cleavage, a process required for the resumption of elongation. Unlike Escherichia coli RNA polymerase at a terminator, arrested RNA polymerase II does not release its RNA but can reestablish the normal elongation mode downstream of an arrest site. Discontinuous elongation probably represents a structural change that precedes, but may not be sufficient for, arrest by RNA polymerase II.