115 resultados para nitric oxide CNS
Resumo:
Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.
Resumo:
A subclone of the human colon adenocarcinoma cell line DLD-1, which grew reproducibly as subcutaneous tumors in nude mice, was isolated. Such cells, when engineered to generate nitric oxide (NO) continuously, grew more slowly in vitro than the wild-type parental cells. This growth retardation was reversed by the addition of N-iminoethyl-L-ornithine. In nude mice, however, the tumors from these cells grew faster than those derived from wild-type cells and were markedly more vascularized, suggesting that NO may act as part of a signaling cascade for neovascularization. Recent observations that the generation of NO in human breast and gynecological cancers correlates positively with tumor grade are consistent with this hypothesis. We suggest that NO may have a dual pro- and antitumor action, depending on the local concentration of the molecule.
Resumo:
In inflammatory states, nitric oxide (.NO) may be synthesized from precursor L-arginine via inducible .NO synthase (iNOS) in large amounts for prolonged periods of time. When .NO acts as an effector molecule under these conditions, it may be toxic to cells by inhibition of iron-containing enzymes or initiation of DNA single-strand breaks. In contrast to molecular targets of .NO, considerably less is known regarding mechanisms by which cells become resistant to .NO. Metallothionein (MT), the major protein thiol induced in cells exposed to cytokines and bacterial products, is capable of forming iron-dinitrosyl thiolates in vitro. Therefore, we tested the hypothesis that overexpression of MT reduces the sensitivity of NIH 3T3 cells to the .NO donor, S-nitrosoacetylpenicillamine (SNAP), and to .NO released from cells (NIH 3T3-DFG-iNOS) after infection with a retroviral vector expressing human iNOS gene. There was a 4-fold increase in MT in cells transfected with the mouse MT-1 gene (NIH 3T3/MT) compared to cells transfected with the promoter-free inverted gene (NIH 3T3/TM). NIH 3T3/MT cells were more resistant than NIH 3T3/TM cells to the cytotoxic effects of SNAP (0.1-1.0 mM) or .NO released from NIH 3T3-DFG-iNOS cells. A brief (1 h) exposure to 10 mM SNAP caused DNA single-strand breaks that were 9-fold greater in NIH 3T3/TM compared to NIH 3T3/MT cells. Electron paramagnetic resonance spectroscopy of NIH 3T3 cells revealed a greater peak at g = 2.04 (e.g., iron-dinitrosyl complex) in NIH 3T3/MT than NIH 3T3/TM cells. These data are consistent with a role for cytoplasmic MT in interacting with .NO and reducing .NO-induced cyto- and nuclear toxicity.
Resumo:
The nature of an L-arginine-derived relaxing factor released from vascular smooth muscle cells cultured on microcarrier beads and stimulated for 20 h with interleukin 1 beta was investigated. Unlike the unstable relaxation elicited by authentic nitric oxide (NO) in a cascade superfusion bioassay system, the effluate from vascular smooth muscle cells induced a stable relaxation that was susceptible to inhibition by oxyhemoglobin. Three putative endogenous NO carriers mimicked this stable relaxing effect: S-nitroso-L-cysteine, low molecular weight dinitrosyl-iron complexes (DNICs), and the adduct of NG-hydroxy-L-arginine (HOArg) with NO. Inactivation of S-nitroso-L-cysteine by Hg2+ ions or trapping of DNICs with agarose-bound bovine serum albumin abolished their relaxing effects, whereas that of the vascular smooth muscle cell effluate remained unaffected. In addition, neither S-nitrosothiols nor DNICs were detectable in the effluate from these cells, as judged by UV and electron spin resonance (ESR) spectroscopy. The HOArg-NO adduct was instantaneously generated upon reaction of HOArg with authentic NO under bioassay conditions. Its pharmacological profile was indistinguishable from that of the vascular smooth muscle cell effluate, as judged by comparative bioassay with different vascular and nonvascular smooth muscle preparations. Moreover, up to 100 nM HOArg was detected in the effluate from interleukin 1 beta-stimulated vascular smooth muscle cells, suggesting that sufficient amounts of HOArg are released from these cells to spontaneously generate the HOArg-NO adduct. This intercellular NO carrier probably accounts for the stable L-arginine-derived relaxing factor released from cytokine-stimulated vascular smooth muscle cells and also from other NO-producing cells, such as macrophages and neutrophils.
Resumo:
The role of nitric oxide (NO) in the increase in local cerebral blood flow (LCBF) elicited by focal cortical epileptic seizures was investigated in anesthetized adult rats. Seizures were induced by topical bicuculline methiodide applied through two cranial windows drilled over homotopic sites of the frontal cortex, and LCBF was measured by quantitative autoradiography by using 4-iodo[N-methyl-14C]antipyrine. Superfusion of an inhibitor of NO synthase, N omega-nitro-L-arginine (NA; 1 mM), for 45 min abolished the increase of LCBF induced by topical bicuculline methiodide (10 mM) [164 +/- 18 ml/100 g per min in the artificial cerebrospinal fluid (aCSF)-superfused side and 104 +/- 12 ml/100 g per ml in the NA-superfused side; P < 0.005]. This effect was reversed by coapplication of an excess of L-arginine substrate (10 mM) (218 +/- 22 ml/100 g per min in the aCSF-superfused side and 183 +/- 31 ml/100 g per min in the NA + L-Arg-superfused side) but not by 10 mM D-arginine, a stereoisomer with poor affinity for NO synthase (193 +/- 17 ml/100 g per min in the aCSF-superfused side and 139 +/- 21 ml/100 g per min in the NA + D-Arg-superfused side; P < 0.005). Superfusion of the guanylyl cyclase inhibitor methylene blue attenuated the LCBF increase elicited by topical bicuculline methiodide by 25% +/- 16% (P < 0.05). The present findings suggest that NO is the mediator of the vasodilation in response to focal epileptic seizures.
Resumo:
It has previously been shown that alcohol can suppress reproduction in humans, monkeys, and small rodents by inhibiting release of luteinizing hormone (LH). The principal action is via suppression of the release of LH-releasing hormone (LHRH) both in vivo and in vitro. The present experiments were designed to determine the mechanism by which alcohol inhibits LHRH release. Previous research has indicated that the release of LHRH is controlled by nitric oxide (NO). The proposed pathway is via norepinephrine-induced release of NO from NOergic neurons, which then activates LHRH release. In the present experiments, we further evaluated the details of this mechanism in male rats by incubating medial basal hypothalamic (MBH) explants in vitro and examining the release of NO, prostaglandin E2 (PGE2), conversion of arachidonic acid to prostanoids, and production of cGMP. The results have provided further support for our theory of LHRH control. Norepinephrine increased the release of NO as measured by conversion of [14C]arginine to [14C]citrulline, and this increase was blocked by the alpha 1 receptor blocker prazosin. Furthermore, the release of LHRH induced by nitroprusside (NP), a donor of NO, is related to the activation of soluble guanylate cyclase by NO since NP increased cGMP release from MBHs and cGMP also released LHRH. Ethanol had no effect on the production of NO by MBH explants or the increased release of NO induced by norepinephrine. Therefore, it does not act at that step in the pathway. Ethanol also failed to affect the increase in cGMP induced by NP. On the other hand, as might be expected from previous experiments indicating that LHRH release was brought about by PGE2, NP increased the conversion of [14C]arachidonic acid to its metabolites, particularly PGE2. Ethanol completely blocked the release of LHRH induced by NP and the increase in PGE2 induced by NP. Therefore, the results support the theory that norepinephrine acts to stimulate NO release from NOergic neurons. This NO diffuses to the LHRH terminals where it activates guanylate cyclase, leading to an increase in cGMP. At the same time, it also activates cyclooxygenase. The increase in cGMP increases intracellular free calcium, activating phospholipase A2 to provide arachidonic acid, the substrate for conversion by the activated cyclooxygenase to PGE2, which then activates the release of LHRH. Since alcohol inhibits the conversion of labeled arachidonic acid to PGE2, it must act either directly to inhibit cyclooxygenase or perhaps it may act by blocking the increase in intracellular free calcium induced by cGMP, which is crucial for activation of of both phospholipase A2 and cyclooxygenase.
Resumo:
Nitric oxide synthase (NOS)-containing neurons, termed NOergic neurons, occur in various regions of the hypothalamus, including the median eminence-arcuate region, which plays an important role in controlling the release of luteinzing hormone-releasing hormone (LHRH). We examined the effect of NO on release of gamma-aminobutyric acid (GABA) from medial basal hypothalamic (MBH) explants incubated in vitro. Sodium nitroprusside (NP) (300 microM), a spontaneous releaser of NO, doubled the release of GABA. This release was significantly reduced by incubation of the tissue with hemoglobin, a scavenger of NO, whereas hemoglobin alone had no effect on the basal release of GABA. Elevation of the potassium concentration (40 mM) in the medium increased GABA release 15-fold; this release was further augmented by NP. Hemoglobin blocked the increase in GABA release induced by NP but had no effect on potassium-induced release, suggesting that the latter is not related to NO. As in the case of hemoglobin, NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, had no effect on basal release of GABA, which indicates again that NO is not significant to basal GABA release. However, NMMA markedly inhibited the release of GABA induced by high potassium, which indicates that NO plays a role in potassium-induced release of GABA. In conditions in which the release of GABA was substantially augmented, there was a reduction in GABA tissue stores as well, suggesting that synthesis of GABA in these conditions did not keep up with release of the amine. Although NO released GABA, there was no effect of the released GABA on NO production, for incubation of MBH explants with GABA had no effect on NO release as measured by [14C]citrulline production. To determine whether GABA had any effect on the release of LHRH from these MBH explants, GABA was incubated with the tissue and the effect on LHRH release was determined. GABA (10(-5) or 10(-6) M) induced a 70% decrease in the release of LHRH, indicating that in the male rat GABA inhibits the release of this hypothalamic peptide. This inhibition in LHRH release induced by GABA was blocked by NMMA (300 microM), which indicates that GABA converts the stimulatory effect of NO on LHRH release into an inhibitory one, presumably via GABA receptors, which activate chloride channels that hyperpolarize the cell. Previous results have indicated that norepinephrine stimulates release of NO from the NOergic neurons, which then stimulates the release of LHRH. The current results indicate that the NO released also induces release of GABA, which then inhibits further LHRH release. Thus, in vivo the norepinephrinergic-driven pulses of LHRH release may be terminated by GABA released from GABAergic neurons via NO.
Resumo:
Administration of Escherichia coli lipopolysaccharide (LPS; 10 mg/kg i.v.) to male Wistar rats caused within 240 min (i) a sustained fall (approximately 30 mmHg) in mean arterial blood pressure, (ii) a reduction (> 75%) in the pressor responses to norepinephrine (1 microgram/kg i.v.), and (iii) an induction of nitric oxide synthase (iNOS) as measured in the lung. Dexamethasone (1 mg/kg i.p. at 2 h prior to LPS) attenuated the hypotension and the vascular hyporeactivity to norepinephrine and reduced (by approximately 77%) the expression of iNOS in the lung. These effects of dexamethasone were prevented by pretreatment of LPS-treated rats with a neutralizing antiserum to lipocortin 1 (anti-LC1; 60 mg/kg s.c. at 24 h prior to LPS) but not by a control nonimmune sheep serum. Stimulation of J774.2 macrophages with LPS (1 microgram/ml for 24 h) caused the expression of iNOS and cyclooxygenase 2 (COX-2) protein and significantly increased nitrite generation; this was prevented by dexamethasone (0.1 microM at 1 h prior to LPS), which also increased cell surface lipocortin 1. Pretreatment of J774.2 cells with anti-LC1 (1:60 dilution at 4 h prior to LPS) also abolished the inhibitory effect of dexamethasone on iNOS expression and nitrite accumulation but not that on COX-2 expression. A lipocortin 1 fragment (residues 1-188 of human lipocortin 1; 20 micrograms/ml at 1 h prior to LPS) also blocked iNOS in J774.2 macrophages activated by LPS (approximately 78% inhibition), and this too was prevented by anti-LC1. We conclude that the extracellular release of endogenous lipocortin 1 (i) mediates the inhibition by dexamethasone of the expression of iNOS, but not of COX-2, and (ii) contributes substantially to the beneficial actions of dexamethasone in rats with endotoxic shock.
Resumo:
The signaling pathway initiated by factor Xa on vascular endothelial cells was investigated. Factor Xa stimulated a 5- to 10-fold increased release of nitric oxide (NO) in a dose-dependent reaction (0.1–2.5 μg/ml) unaffected by the thrombin inhibitor hirudin but abolished by active site inhibitors, tick anticoagulant peptide, or Glu-Gly-Arg-chloromethyl ketone. In contrast, the homologous clotting protease factor IXa or another endothelial cell ligand, fibrinogen, was ineffective. A factor Xa inter-epidermal growth factor synthetic peptide L83FTRKL88(G) blocking ligand binding to effector cell protease receptor-1 inhibited NO release by factor Xa in a dose-dependent manner, whereas a control scrambled peptide KFTGRLL was ineffective. Catalytically active factor Xa induced hypotension in rats and vasorelaxation in the isolated rat mesentery, which was blocked by the NO synthase inhibitor l-NG-nitroarginine methyl ester (l-NAME) but not by d-NAME. Factor Xa/NO signaling also produced a dose-dependent endothelial cell release of interleukin 6 (range 0.55–3.1 ng/ml) in a reaction inhibited by l-NAME and by the inter-epidermal growth factor peptide Leu83–Leu88 but unaffected by hirudin. Maximal induction of interleukin 6 mRNA required a brief, 30-min stimulation with factor Xa, unaffected by subsequent addition of tissue factor pathway inhibitor. These data suggest that factor Xa-induced NO release modulates endothelial cell-dependent vasorelaxation and cytokine gene expression. This pathway requiring factor Xa binding to effector cell protease receptor-1 and a secondary step of ligand-dependent proteolysis may preserve an anti-thrombotic phenotype of endothelium but also trigger acute phase responses during activation of coagulation in vivo.
Resumo:
Poly(ADP-ribose) polymerase (PARP) transfers ADP ribose groups from NAD+ to nuclear proteins after activation by DNA strand breaks. PARP overactivation by massive DNA damage causes cell death via NAD+ and ATP depletion. Heretofore, PARP has been thought to be inactive under basal physiologic conditions. We now report high basal levels of PARP activity and DNA strand breaks in discrete neuronal populations of the brain, in ventricular ependymal and subependymal cells and in peripheral tissues. In some peripheral tissues, such as skeletal muscle, spleen, heart, and kidney, PARP activity is reduced only partially in mice with PARP-1 gene deletion (PARP-1−/−), implicating activity of alternative forms of PARP. Glutamate neurotransmission involving N-methyl-d-aspartate (NMDA) receptors and neuronal nitric oxide synthase (nNOS) activity in part mediates neuronal DNA strand breaks and PARP activity, which are diminished by NMDA antagonists and NOS inhibitors and also diminished in mice with targeted deletion of nNOS gene (nNOS−/−). An increase in NAD+ levels after treatment with NMDA antagonists or NOS inhibitors, as well as in nNOS−/− mice, indicates that basal glutamate-PARP activity regulates neuronal energy dynamics.