183 resultados para interleukin 23 receptor gene


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several angiogenic factors and extracellular matrix-degrading enzymes that promote invasion and metastasis of cancer are produced by stromal fibroblasts that surround cancer cells. The expression of genes that code for some of these proteins is regulated by the transcription factor NF-κB. In this report, we demonstrate that conditioned medium (CM) from estrogen receptor (ER)-negative but not ER-positive breast cancer cells induces NF-κB in fibroblasts. In contrast, CM from both ER-positive and ER-negative breast cancer cells induces NF-κB in macrophages and endothelial cells. NF-κB activation in fibroblasts was accompanied by induction of interleukin 6 (IL-6) and urokinase plasminogen activator (uPA), both of which promote angiogenesis and metastasis. A survey of cytokines known for their ability to induce NF-κB identified IL-1α as the factor responsible for NF-κB activation in fibroblasts. Analysis of primary breast carcinomas revealed the presence of IL-1α transcripts in majority of lymph node-positive breast cancers. These results along with the known role of IL-1α and IL-6 in osteoclast formation provide insight into the mechanism of metastasis and hypercalcemia in advanced breast cancers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired β-adrenergic receptor (βAR) function, which includes loss of βAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of βAR function is agonist-stimulated receptor phosphorylation by the βAR kinase (βARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in βAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of βARK1 or the β2AR were mated into a genetic model of murine heart failure (MLP−/−). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP−/− and MLP−/−/β2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP−/−/βARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP−/−/βARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP−/− mice but less than controls. Importantly, heightened βAR desensitization in the MLP−/− mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the βARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal βAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit βARK1 as a novel mode of therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonobese diabetic (NOD) mice develop insulin-dependent diabetes mellitus due to autoimmune T lymphocyte-mediated destruction of pancreatic β cells. Although both major histocompatibility complex class I-restricted CD8+ and class II-restricted CD4+ T cell subsets are required, the specific role each subset plays in the pathogenic process is still unclear. Here we show that class I-dependent T cells are required for all but the terminal stages of autoimmune diabetes development. To characterize the diabetogenic CD8+ T cells responsible, we isolated and propagated in vitro CD8+ T cells from the earliest insulitic lesions of NOD mice. They were cytotoxic to NOD islet cells, restricted to H-2Kd, and showed a diverse T cell receptor β chain repertoire. In contrast, their α chain repertoire was more restricted, with a recurrent amino acid sequence motif in the complementarity-determining region 3 loop and a prevalence of Vα17 family members frequently joined to the Jα42 gene segment. These results suggest that a number of the CD8+ T cells participating in the initial phase of autoimmune β cell destruction recognize a common structural component of Kd/peptide complexes on pancreatic β cells, possibly a single peptide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heme-binding protein 23 kDa (HBP23), a rat isoform of human proliferation-associated gene product (PAG), is a member of the peroxiredoxin family of peroxidases, having two conserved cysteine residues. Recent biochemical studies have shown that HBP23/PAG is an oxidative stress-induced and proliferation-coupled multifunctional protein that exhibits specific bindings to c-Abl protein tyrosine kinase and heme, as well as a peroxidase activity. A 2.6-Å resolution crystal structure of rat HBP23 in oxidized form revealed an unusual dimer structure in which the active residue Cys-52 forms a disulfide bond with conserved Cys-173 from another subunit by C-terminal tail swapping. The active site is largely hydrophobic with partially exposed Cys-173, suggesting a reduction mechanism of oxidized HBP23 by thioredoxin. Thus, the unusual cysteine disulfide bond is involved in peroxidation catalysis by using thioredoxin as the source of reducing equivalents. The structure also provides a clue to possible interaction surfaces for c-Abl and heme. Several significant structural differences have been found from a 1-Cys peroxiredoxin, ORF6, which lacks the C-terminal conserved cysteine corresponding to Cys-173 of HBP23.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Expression of the γ-aminobutyric acid type A receptor α6 subunit gene is restricted to differentiated granule cells of the cerebellum and cochlear nucleus. The mechanisms underlying this limited expression are unknown. Here we have characterized the expression of a series of α6-based transgenes in adult mouse brain. A DNA fragment containing a 1-kb portion upstream of the start site(s), together with exons 1–8, can direct high-level cerebellar granule cell-specific reporter gene expression. Thus powerful granule cell-specific determinants reside within the 5′ half of the α6 subunit gene body. This intron-containing transgene appears to lack the cochlear nucleus regulatory elements. It therefore provides a cassette to deliver gene products solely to adult cerebellar granule cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Norepinephrine contributes to antinociceptive, sedative, and sympatholytic responses in vivo, and α2 adrenergic receptor (α2AR) agonists are used clinically to mimic these effects. Lack of subtype-specific agonists has prevented elucidation of the role that each α2AR subtype (α2A, α2B, and α2C) plays in these central effects. Here we demonstrate that α2AR agonist-elicited sedative, anesthetic-sparing, and analgesic responses are lost in a mouse line expressing a subtly mutated α2AAR, D79N α2AAR, created by two-step homologous recombination. These functional changes are accompanied by failure of the D79N α2AAR to inhibit voltage-gated Ca2+ currents and spontaneous neuronal firing, a measure of K+ current activation. These results provide definitive evidence that the α2AAR subtype is the primary mediator of clinically important central actions of α2AR agonists and suggest that the D79N α2AAR mouse may serve as a model for exploring other possible α2AAR functions in vivo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report shows that loss of heterozygosity at the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) locus occurred in 5/8 (63%) dysplastic liver lesions and 11/18 (61%) hepatocellular carcinomas (HCCs) associated with the high risk factors of hepatitis virus infection and liver cirrhosis. Mutations in the remaining allele were detected in 6/11 (55%) HCCs, including deletions in a polydeoxyguanosine region known to be a target of microsatellite instability. M6P/IGF2R allele loss was also found in cirrhotic tissue of clonal origin adjacent to these dysplastic lesions and HCCs, demonstrating that M6P/IGF2R inactivation occurs early in liver carcinogenesis. In conclusion, HCCs frequently develop from clonal expansions of phenotypically normal, M6P/IGF2R-mutated hepatocytes, providing further support for the idea that M6P/IGF2R functions as a liver tumor-suppressor gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Response to the steroid hormone ecdysone in Drosophila is controlled by genetic regulatory hierarchies that include eight members of the nuclear receptor protein family. The DHR3 gene, located within the 46F early-late ecdysone-inducible chromosome puff, encodes an orphan nuclear receptor that recently has been shown to exert both positive and negative regulatory effects in the ecdysone-induced genetic hierarchies at metamorphosis. We used a reverse genetics approach to identify 11 DHR3 mutants from a pool of lethal mutations in the 46F region on the second chromosome. Two DHR3 mutations result in amino acid substitutions within the conserved DNA binding domain. Analysis of DHR3 mutants reveals that DHR3 function is required to complete embryogenesis. All DHR3 alleles examined result in nervous system defects in the embryo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Epstein–Barr virus-induced gene 3 (EBI3) is a novel soluble hematopoietin component related to the p40 subunit of interleukin 12 (IL-12). When EBI3 was expressed in cells, it accumulated in the endoplasmic reticulum and associated with the molecular chaperone calnexin, indicating that subsequent processing and secretion might be dependent on association with a second subunit. Coimmunoprecipitations from lysates and culture media of cells transfected with expression vectors for EBI3 and/or the p35 subunit of IL-12 now reveal a specific association of EBI3 with p35. Coexpression of EBI3 and p35 mutually facilitates their secretion. Most importantly, a large fraction of p35 in extracts of the trophoblast component of a human full-term normal placenta specifically coimmunoprecipitated with EBI3, indicating that EBI3 is in a heterodimer with p35, in vivo. Because EBI3 is expressed in EBV-transformed B lymphocytes, tonsil, spleen, and placental trophoblasts, the EBI3/p35 heterodimer is likely to be an important immunomodulator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding nuclear receptor signaling in vivo would be facilitated by an efficient methodology to determine where a nuclear receptor is active. Herein, we present a feedback-inducible expression system in transgenic mice to detect activated nuclear receptor effector proteins by using an inducible reporter gene. With this approach, reporter gene induction is not limited to a particular tissue, and, thus, this approach provides the opportunity for whole-animal screens. Furthermore, the effector and reporter genes are combined to generate a single strain of transgenic mice, which enables direct and rapid analysis of the offspring. The system was applied to localize sites where the retinoic acid receptor ligand-binding domain is activated in vivo. The results identify previously discovered sources of retinoids in the embryo and indicate the existence of previously undiscovered regions of retinoic acid receptor signaling in vivo. Notably, the feedback-inducible nuclear-receptor-driven assay, combined with an independent in vitro assay, provides evidence for a site of retinoid synthesis in the isthmic mesenchyme. These data illustrate the potential of feedback-inducible nuclear-receptor-driven analyses for assessing in vivo activation patterns of nuclear receptors and for analyzing pharmacological properties of natural and synthetic ligands of potential therapeutic value.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mammalian anx7 gene codes for a Ca2+-activated GTPase, which supports Ca2+/GTP-dependent secretion events and Ca2+ channel activities in vitro and in vivo. To test whether anx7 might be involved in Ca2+ signaling in secreting pancreatic β cells, we knocked out the anx7 gene in the mouse and tested the insulin-secretory properties of the β cells. The nullizygous anx7 (−/−) phenotype is lethal at embryonic day 10 because of cerebral hemorrhage. However, the heterozygous anx7 (+/−) mouse, although expressing only low levels of ANX7 protein, is viable and fertile. The anx7 (+/−) phenotype is associated with a substantial defect in insulin secretion, although the insulin content of the islets, is 8- to 10-fold higher in the mutants than in the normal littermate control. We infer from electrophysiological studies that both glucose-stimulated secretion and voltage-dependent Ca2+ channel functions are normal. However, electrooptical recordings indicate that the (+/−) mutation has caused a change in the ability of inositol 1,4,5-trisphosphate (IP3)-generating agonists to release intracellular calcium. The principle molecular consequence of lower anx7 expression is a profound reduction in IP3 receptor expression and function in pancreatic islets. The profound increase in islets, β cell number, and size may be a means of compensating for less efficient insulin secretion by individual defective pancreatic β cells. This is a direct demonstration of a connection between glucose-activated insulin secretion and Ca2+ signaling through IP3-sensitive Ca2+ stores.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Müllerian inhibiting substance (MIS) causes regression of the fetal Müllerian duct on binding a heteromeric complex of types I and II cell-surface receptors in the fetal urogenital ridge. The MIS type II receptor (MISRII), which provides specificity for MIS, is also expressed in the adult testis, ovary, and uterus. The rat MISRII promoter was cloned to study the molecular mechanisms underlying its temporal and cell-specific expression. The 1.6-kilobase (kb) promoter contained no recognizable TATA or CAAT box, but there was a consensus Sp1 site upstream of the transcription initiation site. Two binding sites for the orphan nuclear receptor steroidogenic factor-1 (SF-1) are occupied in vitro by using nuclear extracts from R2C cells, an MIS-responsive rat Leydig cell line that expresses endogenous MISRII, with differing affinities, indicating that the distal SF-1 site is bound more avidly than is the proximal SF-1 site. R2C cells transfected with MISRII promoter/luciferase reporter constructs show a 12-fold induction with the 1.6-kb fragment and deletion of sequences upstream of −282-bp lowered luciferase expression to one-third. Mutation of both SF-1 sites greatly inhibited luciferase expression, whereas mutation of either site alone resulted in continuing activation by endogenous SF-1, indicating redundancy. In vitro binding and transcriptional analyses suggest that a proximal potential Smad-responsive element and an uncharacterized element also contribute to activation of the MISRII gene. R2C cells and MISRII promoter regulation can now be used to uncover endogenous transcription factors responsible for receptor expression or repression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The α9 acetylcholine receptor (α9 AChR) is specifically expressed in hair cells of the inner ear and is believed to be involved in synaptic transmission between efferent nerves and hair cells. Using a recently developed method, we modified a bacterial artificial chromosome containing the mouse α9 AChR gene with a reporter gene encoding green fluorescent protein (GFP) to generate transgenic mice. GFP expression in transgenic mice recapitulated the known temporal and spatial expression of α9 AChR. However, we observed previously unidentified dynamic changes in α9 AChR expression in cochlear and vestibular sensory epithelia during neonatal development. In the cochlea, inner hair cells persistently expressed high levels of α9 AChR in both the apical and middle turns, whereas both outer and inner hair cells displayed dynamic changes of α9 AChR expression in the basal turn. In the utricle, we observed high levels of α9 AChR expression in the striolar region during early neonatal development and high levels of α9 AChR in the extrastriolar region in adult mice. Further, simultaneous visualization of efferent innervation and α9 AChR expression showed that dynamic expression of α9 AChR in developing hair cells was independent of efferent contacts. We propose that α9 AChR expression in developing auditory and vestibular sensory epithelia correlates with maturation of hair cells and is hair-cell autonomous.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The inhibition of β-galactosidase expression in a medium containing both glucose and lactose is a typical example of the glucose effect in Escherichia coli. We studied the glucose effect in the lacL8UV5 promoter mutant, which is independent of cAMP and cAMP receptor protein (CRP). A strong inhibition of β-galactosidase expression by glucose and a diauxic growth were observed when the lacL8UV5 cells were grown on a glucose–lactose medium. The addition of isopropyl β-d-thiogalactoside to the culture medium eliminated the glucose effect. Disruption of the crr gene or overproduction of LacY also eliminated the glucose effect. These results are fully consistent with our previous finding that the glucose effect in wild-type cells growing in a glucose–lactose medium is not due to the reduction of CRP–cAMP levels but is due to the inducer exclusion. We found that the glucose effect in the lacL8UV5 cells was no longer observed when either the crp or the cya gene was disrupted. Evidence suggested that CRP–cAMP may not enhance directly the lac repressor action in vivo. Northern blot analysis revealed that the mRNA for ptsG, a major glucose transporter gene, was markedly reduced in a Δcrp or Δcya background. The constitutive expression of the ptsG gene by the introduction of a multicopy plasmid restored the glucose effect in Δcya or Δcrp cells. We conclude that CRP–cAMP plays a crucial role in inducer exclusion, which is responsible for the glucose–lactose diauxie, by activating the expression of the ptsG gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Assembly and mutual proximities of α, β, and γc subunits of the interleukin 2 receptors (IL-2R) in plasma membranes of Kit 225 K6 T lymphoma cells were investigated by fluorescence resonance energy transfer (FRET) using fluorescein isothiocyanate- and Cy3-conjugated monoclonal antibodies (mAbs) that were directed against the IL-2Rα, IL-2Rβ, and γc subunits of IL-2R. The cell-surface distribution of subunits was analyzed at the nanometer scale (2–10 nm) by FRET on a cell-by-cell basis. The cells were probed in resting phase and after coculture with saturating concentrations of IL-2, IL-7, and IL-15. FRET data from donor- and acceptor-labeled IL-2Rβ-α, γ-α, and γ-β pairs demonstrated close proximity of all subunits to each other in the plasma membrane of resting T cells. These mutual proximities do not appear to represent mAb-induced microaggregation, because FRET measurements with Fab fragments of the mAbs gave similar results. The relative proximities were meaningfully modulated by binding of IL-2, IL-7, and IL-15. Based on FRET analysis the topology of the three subunits at the surface of resting cells can be best described by a “triangular model” in the absence of added interleukins. IL-2 strengthens the bridges between the subunits, making the triangle more compact. IL-7 and IL-15 act in the opposite direction by opening the triangle possibly because they associate their private specific α receptors with the β and/or γc subunits of the IL-2R complex. These data suggest that IL-2R subunits are already colocalized in resting T cells and do not require cytokine-induced redistribution. This colocalization is significantly modulated by binding of relevant interleukins in a cytokine-specific manner.