334 resultados para gene disruption cyanobacterial mutant


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the gene encoding rhodopsin, the visual pigment in rod photoreceptors, lead to retinal degeneration in species from Drosophila to man. The pathogenic sequence from rod cell-specific mutation to degeneration of rods and cones remains unclear. To understand the disease process in man, we studied heterozygotes with 18 different rhodopsin gene mutations by using noninvasive tests of rod and cone function and retinal histopathology. Two classes of disease expression were found, and there was allele-specificity. Class A mutants lead to severely abnormal rod function across the retina early in life; topography of residual cone function parallels cone cell density. Class B mutants are compatible with normal rods in adult life in some retinal regions or throughout the retina, and there is a slow stereotypical disease sequence. Disease manifests as a loss of rod photoreceptor outer segments, not singly but in microscopic patches that coalesce into larger irregular areas of degeneration. Cone outer segment function remains normal until >75% of rod outer segments are lost. The topography of cone loss coincides with that of rod loss. Most class B mutants show an inferior-nasal to superior-temporal retinal gradient of disease vulnerability associated with visual cycle abnormalities. Class A mutant alleles behave as if cytotoxic; class B mutants can be relatively innocuous and epigenetic factors may play a major role in the retinal degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of MLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3–10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3–10 reversion rate, whereas the hom3–10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is a progressive multigenic disorder characterized by defined changes in the transformed phenotype that culminates in metastatic disease. Determining the molecular basis of progression should lead to new opportunities for improved diagnostic and therapeutic modalities. Through the use of subtraction hybridization, a gene associated with transformation progression in virus- and oncogene-transformed rat embryo cells, progression elevated gene-3 (PEG-3), has been cloned. PEG-3 shares significant nucleotide and amino acid sequence homology with the hamster growth arrest and DNA damage-inducible gene gadd34 and a homologous murine gene, MyD116, that is induced during induction of terminal differentiation by interleukin-6 in murine myeloid leukemia cells. PEG-3 expression is elevated in rodent cells displaying a progressed-transformed phenotype and in rodent cells transformed by various oncogenes, including Ha-ras, v-src, mutant type 5 adenovirus (Ad5), and human papilloma virus type 18. The PEG-3 gene is transcriptionally activated in rodent cells, as is gadd34 and MyD116, after treatment with DNA damaging agents, including methyl methanesulfonate and γ-irradiation. In contrast, only PEG-3 is transcriptionally active in rodent cells displaying a progressed phenotype. Although transfection of PEG-3 into normal and Ad5-transformed cells only marginally suppresses colony formation, stable overexpression of PEG-3 in Ad5-transformed rat embryo cells elicits the progression phenotype. These results indicate that PEG-3 is a new member of the gadd and MyD gene family with similar yet distinct properties and this gene may directly contribute to the transformation progression phenotype. Moreover, these studies support the hypothesis that constitutive expression of a DNA damage response may mediate cancer progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Chinese hamster ovary (CHO) mutant UV40 cell line is hypersensitive to UV and ionizing radiation, simple alkylating agents, and DNA cross-linking agents. The mutant cells also have a high level of spontaneous chromosomal aberrations and 3-fold elevated sister chromatid exchange. We cloned and sequenced a human cDNA, designated XRCC9, that partially corrected the hypersensitivity of UV40 to mitomycin C, cisplatin, ethyl methanesulfonate, UV, and γ-radiation. The spontaneous chromosomal aberrations in XRCC9 cDNA transformants were almost fully corrected whereas sister chromatid exchanges were unchanged. The XRCC9 genomic sequence was cloned and mapped to chromosome 9p13. The translated XRCC9 sequence of 622 amino acids has no similarity with known proteins. The 2.5-kb XRCC9 mRNA seen in the parental cells was undetectable in UV40 cells. The mRNA levels in testis were up to 10-fold higher compared with other human tissues and up to 100-fold higher compared with other baboon tissues. XRCC9 is a candidate tumor suppressor gene that might operate in a postreplication repair or a cell cycle checkpoint function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major gibberellin (GA) controlling stem elongation in pea (Pisum sativum L.) is GA1, which is formed from GA20 by 3β-hydroxylation. This step, which limits GA1 biosynthesis in pea, is controlled by the Le locus, one of the original Mendelian loci. Mutations in this locus result in dwarfism. We have isolated cDNAs encoding a GA 3β-hydroxylase from lines of pea carrying the Le, le, le-3, and led alleles. The cDNA sequences from le and le-3 each contain a base substitution resulting in single amino acid changes relative to the sequence from Le. The cDNA sequence from led, a mutant derived from an le line, contains both the le “mutation” and a single-base deletion, which causes a shift in reading frame and presumably a null mutation. cDNAs from each line were expressed in Escherichia coli. The expression product for the clone from Le converted GA9 to GA4, and GA20 to GA1, with Km values of 1.5 μM and 13 μM, respectively. The amino acid substitution in the clone from le increased Km for GA9 100-fold and reduced conversion of GA20 to almost nil. Expression products from le and le-3 possessed similar levels of 3β-hydroxylase activity, and the expression product from led was inactive. Our results suggest that the 3β-hydroxylase cDNA is encoded by Le. Le transcript is expressed in roots, shoots, and cotyledons of germinating pea seedlings, in internodes and leaves of established seedlings, and in developing seeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proximal spinal muscular atrophy is an autosomal recessive human disease of spinal motor neurons leading to muscular weakness with onset predominantly in infancy and childhood. With an estimated heterozygote frequency of 1/40 it is the most common monogenic disorder lethal to infants; milder forms represent the second most common pediatric neuromuscular disorder. Two candidate genes—survival motor neuron (SMN) and neuronal apoptosis inhibitory protein have been identified on chromosome 5q13 by positional cloning. However, the functional impact of these genes and the mechanism leading to a degeneration of motor neurons remain to be defined. To analyze the role of the SMN gene product in vivo we generated SMN-deficient mice. In contrast to the human genome, which contains two copies, the mouse genome contains only one SMN gene. Mice with homozygous SMN disruption display massive cell death during early embryonic development, indicating that the SMN gene product is necessary for cellular survival and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In eukaryotic cells, DNA polymerase β (polβ) carries out base-excision repair (BER) required for DNA maintenance, replication, recombination, and drug resistance. A specific deletion in one allele in the coding sequence of the polβ gene occurs in colorectal and breast carcinomas. The 87-bp deleted region encodes amino acid residues 208–236 in the catalytic domain of the enzyme. Here, we report evidence for expression of the wild-type (WT) and the truncated polβ proteins in colorectal tumors. To elucidate the potential functional consequences of polβ truncation, stable HeLa cell lines were established from cloned WT and variant polβΔ208–236. Cells expressing the variant protein exhibited substantially decreased BER activity. To test our hypothesis that truncated polβ may disrupt the function of the WT enzyme, we stably transfected mouse embryonic fibroblast 16.3 cells with polβΔ208–236 cDNA. Reverse transcription–PCR and Western blot analyses showed that the new cell line, 16.3ΔP, expresses the WT and the truncated polβ mRNA and proteins. BER and binding activities were undetectable in these cells. Furthermore, in vivo the 16.3ΔP cells were more sensitive to N-methyl-N′-nitro-N-nitrosoguanidine than the 16.3 cells. On adding increasing amounts of 16.3ΔP protein extracts, the BER and DNA binding activities of extracts of the parent 16.3 cell line progressively declined. These results strongly suggest that truncated polβ acts as a dominant negative mutant. The defective polβ may facilitate accumulation of mutations, leading to the expression of a mutator phenotype in tumor cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic exposure to cocaine leads to prominent, long-lasting changes in behavior that characterize a state of addiction. The striatum, including the nucleus accumbens and caudoputamen, is an important substrate for these actions. We previously have shown that long-lasting Fos-related proteins of 35–37 kDa are induced in the striatum by chronic cocaine administration. In the present study, the identity and functional role of these Fos-related proteins were examined using fosB mutant mice. The striatum of these mice completely lacked basal levels of the 35- to 37-kDa Fos-related proteins as well as their induction by chronic cocaine administration. This deficiency was associated with enhanced behavioral responses to cocaine: fosB mutant mice showed exaggerated locomotor activation in response to initial cocaine exposures as well as robust conditioned place preference to a lower dose of cocaine, compared with wild-type littermates. These results establish the long-lasting Fos-related proteins as products of the fosB gene (specifically ΔFosB isoforms) and suggest that transcriptional regulation by fosB gene products plays a critical role in cocaine-induced behavioral responses. This finding demonstrates that a Fos family member protein plays a functional role in behavioral responses to drugs of abuse and implicates fosB gene products as important determinants of cocaine abuse.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the nubbin (nub) gene have a phenotype consisting of a severe wing size reduction and pattern alterations, such as transformations of distal elements into proximal ones. nub expression is restricted to the wing pouch cells in wing discs since early larval development. These effects are also observed in genetic mosaics where cell proliferation is reduced in all wing blade regions autonomously, and transformation into proximal elements is observed in distal clones. Clones located in the proximal region of the wing blade cause in addition nonautonomous reduction of the whole wing. Cell lineage experiments in a nub mutant background show that clones respect neither the anterior–posterior nor the dorsal–ventral boundary but that the selector genes have been correctly expressed since early larval development. The phenotypes of nub el and nub dpp genetic combinations are synergistic and the overexpression of dpp in clones in nub wings does not result in overproliferation of the surrounding wild-type cells. We discuss the role of nub in the wing’s proximo–distal axis and in the formation of compartment boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The factors that regulate the perpetuation and invasiveness of rheumatoid synovitis have been the subject of considerable inquiry, and the possibility that nonimmunologic defects can contribute to the disease has not been rigorously addressed. Using a mismatch detection system, we report that synovial tissue from the joints of severe chronic rheumatoid arthritis patients contain mutant p53 transcripts, which were not found in skin samples from the same patients or in joints of patients with osteoarthritis. Mutant p53 transcripts also were identified in synoviocytes cultured from rheumatoid joints. The predicted amino acid substitutions in p53 were identical or similar to those commonly observed in a variety of tumors and might influence growth and survival of rheumatoid synoviocytes. Thus, mutations in p53 and subsequent selection of the mutant cells may occur in the joints of patients as a consequence of inflammation and contribute to the pathogenesis of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A common mutation (C677T) in the gene encoding for methylenetetrahydrofolate reductase (MTHFR) (5-methyltetrahydrofolate:(acceptor) oxidoreductase, EC 1.7.99.5), a key regulatory enzyme in one-carbon metabolism, results in a thermolabile variant of the MTHFR enzyme with reduced activity in vitro. In the present study we used a chromatographic method for folate analysis to test the hypothesis that this mutation would be associated with altered distribution of red blood cell (RBC) folates. An alteration was found as manifested by the presence of formylated tetrahydrofolate polyglutamates in addition to methylated derivatives in the RBCs from homozygous mutant individuals. 5-Methyltetrahydrofolate polyglutamates were the only folate form found in RBCs from individuals with the wild-type genotype. Existence of formylated folates in RBCs only from individuals with the thermolabile MTHFR is consistent with the hypothesis that there is in vivo impairment in the activity of the thermolabile variant of MTHFR and that this impairment results in an altered distribution of RBC folates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The twn2 mutant of Arabidopsis exhibits a defect in early embryogenesis where, following one or two divisions of the zygote, the decendents of the apical cell arrest. The basal cells that normally give rise to the suspensor proliferate abnormally, giving rise to multiple embryos. A high proportion of the seeds fail to develop viable embryos, and those that do, contain a high proportion of partially or completely duplicated embryos. The adult plants are smaller and less vigorous than the wild type and have a severely stunted root. The twn2-1 mutation, which is the only known allele, was caused by a T-DNA insertion in the 5′ untranslated region of a putative valyl-tRNA synthetase gene, valRS. The insertion causes reduced transcription of the valRS gene in reproductive tissues and developing seeds but increased expression in leaves. Analysis of transcript initiation sites and the expression of promoter–reporter fusions in transgenic plants indicated that enhancer elements inside the first two introns interact with the border of the T-DNA to cause the altered pattern of expression of the valRS gene in the twn2 mutant. The phenotypic consequences of this unique mutation are interpreted in the context of a model, suggested by Vernon and Meinke [Vernon, D. M. & Meinke, D. W. (1994) Dev. Biol. 165, 566–573], in which the apical cell and its decendents normally suppress the embryogenic potential of the basal cell and its decendents during early embryo development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutant forms of the BRCA2 gene contribute significantly to hereditary breast cancer. Isolation of the normal and mutant forms of the BRCA2 gene with its natural promoter would greatly facilitate analysis of the gene and its contribution to breast cancer. We have accomplished the direct isolation of the 90-kb gene from total human DNA by transformation-associated recombination in yeast using a small amount of 5′ and 3′ BRCA2 sequence information. Because the entire isolation procedure of a single chromosomal gene could be accomplished in approximately 2 weeks, the transformation-associated recombination cloning approach is readily applicable to studies of chromosome alterations and human genetic diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanisms responsible for the cellular uptake of copper in mammalian cells are unknown. We describe isolation of a human gene involved in this process by complementation of the yeast high-affinity copper uptake mutant, ctr1. Besides complementing ctr1 growth defect on nonfermentable media, the human gene also rescues iron transport and SOD1 defects in ctr1 yeast. Overexpression of the gene in yeast leads to vulnerability to the toxicity of copper overload. In addition, its expression in ctr1 yeast significantly increases the level of cellular copper, as demonstrated by atomic absorption. We propose this gene as a candidate for high-affinity copper uptake in humans and by analogy have named it hCTR1. The hCTR1 and yeast CTR1 predicted transmembrane proteins are 29% identical, but the human protein is substantially smaller in both the extracellular metal-binding and intracellular domains. An additional human gene similar to hCTR1, here named hCTR2, was identified in a database search. Both hCTR1 and hCTR2 are expressed in all human tissues examined, and both genes are located in 9q31/32. These studies, together with the previously recognized functional and sequence similarity between the Menkes/Wilson copper export proteins and CCC2 in yeast, demonstrate that similar copper homeostatic mechanisms are used in these evolutionarily divergent organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide produced in endothelial cells affects vascular tone. To investigate the role of endothelial nitric oxide synthase (eNOS) in blood pressure regulation, we have generated mice heterozygous (+/−) or homozygous (−/−) for disruption of the eNOS gene. Immunohistochemical staining with anti-eNOS antibodies showed reduced amounts of eNOS protein in +/− mice and absence of eNOS protein in −/− mutant mice. Male or female mice of all three eNOS genotypes were indistinguishable in general appearance and histology, except that −/− mice had lower body weights than +/+ or +/− mice. Blood pressures tended to be increased (by approximately 4 mmHg) in +/− mice compared with +/+, while −/− mice had a significant increase in pressure compared with +/+ mice (≈18 mmHg) or +/− mice (≈14 mmHg). Plasma renin concentration in the −/− mice was nearly twice that of +/+ mice, although kidney renin mRNA was modestly decreased in the −/− mice. Heart rates in the −/− mice were significantly lower than in +/− or +/+ mice. Appropriate genetic controls show that these phenotypes in F2 mice are due to the eNOS mutation and are not due to sequences that might differ between the two parental strains (129 and C57BL/6J) and are linked either to the eNOS locus or to an unlinked chromosomal region containing the renin locus. Thus eNOS is essential for maintenance of normal blood pressures and heart rates. Comparisons between the current eNOS mutant mice and previously generated inducible nitric oxide synthase mutants showed that homozygous mutants for the latter differ in having unaltered blood pressures and heart rates; both are susceptible to lipopolysaccharide-induced death.