197 resultados para arts as expression of the ineffable


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 5.2-kb mRNA band that contains estrogen receptor (ER) sequence and exhibits sex- and tissue-specific expression has been identified in rat pituitary via Northern analysis; this band is composed of at least two distinctive ER mRNA isoforms. This mRNA is expressed in high levels in female pituitary but is absent in male pituitary and uterus, whereas the mRNA encoding the full-length receptor (6.2 kb) is expressed in all the aforementioned tissues. Estradiol treatment potently induces the expression of the 5.2-kb band in the male pituitary. Oligonucleotide hybridization and ribonuclease-protection experiments indicate that the pituitary ER variant is missing exons 1-4. Two corresponding cDNA clones, truncated estrogen receptor product 1 and 2 (TERP-1 and TERP-2), were isolated by using the anchored PCR. Both sequences contain a 31-bp segment of specific sequence upstream of exon 5; TERP-2, however, contains an additional 66 bp of specific sequence between the 31-bp segment and exon 5. On Northern analysis, probes complementary to the 31-bp segment of specific sequence hybridize only to the 5.2-kb band. Immunoblotting identified several proteins in rat pituitary that could represent the translation products of these or related transcripts. In summary, several ER isoforms have been identified that exhibit both tissue-specific expression and marked estrogen regulation and differ from full-length receptor by virtue of sequence upstream of the exon 4/5 boundary. Physiologically, the putative proteins encoded by these or similar isoforms might be important modulators of the tissue- and promoter-specific effects of estradiol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the 70-kDa polypeptide of human Ku autoantigen in rat cells is shown to suppress specifically the induction of hsp70 upon heat shock. Thermal induction of other heat shock proteins is not significantly affected, nor is the state of phosphorylation or the DNA-binding ability of the heat shock transcription factor HSF1. These findings support a model in which hsp70 gene expression is controlled by a second regulatory factor in addition to the positive activator HSF1. The Ku autoantigen, or a protein closely related to it, is likely to be involved in the regulation of hsp70 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ALL-1 gene was discovered by virtue of its involvement in human acute leukemia. Its Drosophila homolog trithorax (trx) is a member of the trx-Polycomb gene family, which maintains correct spatial expression of the Antennapedia and bithorax complexes during embryogenesis. The C-terminal SET domain of ALL-1 and TRITHORAX (TRX) is a 150-aa motif, highly conserved during evolution. We performed yeast two hybrid screening of Drosophila cDNA library and detected interaction between a TRX polypeptide spanning SET and the SNR1 protein. SNR1 is a product of snr1, which is classified as a trx group gene. We found parallel interaction in yeast between the SET domain of ALL-1 and the human homolog of SNR1, INI1 (hSNF5). These results were confirmed by in vitro binding studies and by demonstrating coimmunoprecipitation of the proteins from cultured cells and/or transgenic flies. Epitope-tagged SNR1 was detected at discrete sites on larval salivary gland polytene chromosomes, and these sites colocalized with around one-half of TRX binding sites. Because SNR1 and INI1 are constituents of the SWI/SNF complex, which acts to remodel chromatin and consequently to activate transcription, the interactions we observed suggest a mechanism by which the SWI/SNF complex is recruited to ALL-1/trx targets through physical interactions between the C-terminal domains of ALL-1 and TRX and INI1/SNR1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell cycle inhibitor p21/WAF1/Cip1 is expressed in many cell types and is regulated by p53-dependent and p53-independent mechanisms. p21 is an important regulator of hepatocyte cell cycle, differentiation, and liver development, but little is known about the regulation of its synthesis in hepatocytes. We report herein that the p21 gene is constitutively expressed in human hepatoma HepG2 cells. Deletion analysis of the p21 promoter showed that it contains a distal (positions −2,300/−210) and a proximal (positions −124 to −61) region that act synergistically to achieve high levels of constitutive expression. The proximal region that consists of multiple Sp1 binding sites is essential for constitutive p21 promoter activity in hepatocytes. This region also mediates the transcriptional activation of the p21 promoter by members of the Smad family of proteins, which play important role in the transduction of extracellular signals such as transforming growth factor β, activin, etc. Constitutive expression of p21 was severely reduced by a C-terminally truncated form of Smad4 that was shown previously to block signaling through Smads. Smad3/4 and to a much lesser extent Smad2/4 caused high levels of transcriptional activation of the p21 promoter. Transactivation was compromised by N- or C-terminally truncated forms of Smad3. By using Gal4-Sp1 fusion proteins, we show that Smad proteins can activate gene transcription via functional interactions with the ubiquitous factor Sp1. These data demonstrate that Smad proteins and Sp1 participate in the constitutive or inducible expression of the p21 gene in hepatic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protective/suppressive major histocompatibility complex (MHC) class II alleles have been identified in humans and mice where they exert a disease-protective and immunosuppressive effect. Various modes of action have been proposed, among them differential expression of MHC class II genes in different types of antigen-presenting cells impacting on the T helper type 1 (Th1)–Th2 balance. To test this possibility, the expression of H-2 molecules from the four haplotypes H-2b, H-2d, H-2k, and H-2q was determined on bone marrow-derived macrophages (BMDMs) and splenic B cells. The I-Ab and I-Ek molecules, both well characterized as protective/suppressive, are expressed at a high level on almost all CD11b+ BMDMs for 5–8 days, after which expression slowly declines. In contrast, I-Ad, I-Ak, and I-Aq expression is lower, peaks over a shorter period, and declines more rapidly. No differential expression could be detected on B cells. In addition, the differential MHC class II expression found on macrophages skews the cytokine response of T cells as shown by an in vitro restimulation assay with BMDMs as antigen-presenting cells. The results indicate that macrophages of the protective/suppressive haplotypes express MHC class II molecules at a high level and exert Th1 bias, whereas low-level expression favors a Th2 response. We suggest that the extent of expression of the class II gene gates the back signal from T cells and in this way controls the activity of macrophages. This effect mediated by polymorphic nonexon segments of MHC class II genes may play a role in determining disease susceptibility in humans and mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cDNA from a novel Ca2+-dependent member of the mitochondrial solute carrier superfamily was isolated from a rabbit small intestinal cDNA library. The full-length cDNA clone was 3,298 nt long and coded for a protein of 475 amino acids, with four elongation factor-hand motifs located in the N-terminal half of the molecule. The 25-kDa N-terminal polypeptide was expressed in Escherichia coli, and it was demonstrated that it bound Ca2+, undergoing a reversible and specific conformational change as a result. The conformation of the polypeptide was sensitive to Ca2+ which was bound with high affinity (Kd ≈ 0.37 μM), the apparent Hill coefficient for Ca2+-induced changes being about 2.0. The deduced amino acid sequence of the C-terminal half of the molecule revealed 78% homology to Grave disease carrier protein and 67% homology to human ADP/ATP translocase; this sequence homology identified the protein as a new member of the mitochondrial transporter superfamily. Northern blot analysis revealed the presence of a single transcript of about 3,500 bases, and low expression of the transporter could be detected in the kidney but none in the liver. The main site of expression was the colon with smaller amounts found in the small intestine proximal to the ileum. Immunoelectron microscopy localized the transporter in the peroxisome, although a minor fraction was found in the mitochondria. The Ca2+ binding N-terminal half of the transporter faces the cytosol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The het-s locus of Podospora anserina is a heterokaryon incompatibility locus. The coexpression of the antagonistic het-s and het-S alleles triggers a lethal reaction that prevents the formation of viable heterokaryons. Strains that contain the het-s allele can display two different phenotypes, [Het-s] or [Het-s*], according to their reactivity in incompatibility. The detection in these phenotypically distinct strains of a protein expressed from the het-s gene indicates that the difference in reactivity depends on a posttranslational difference between two forms of the polypeptide encoded by the het-s gene. This posttranslational modification does not affect the electrophoretic mobility of the protein in SDS/PAGE. Several results suggest a similarity of behavior between the protein encoded by the het-s gene and prions. The [Het-s] character can propagate in [Het-s*] strains as an infectious agent, producing a [Het-s*] → [Het-s] transition, independently of protein synthesis. Expression of the [Het-s] character requires a functional het-s gene. The protein present in [Het-s] strains is more resistant to proteinase K than that present in [Het-s*] mycelium. Furthermore, overexpression of the het-s gene increases the frequency of the transition from [Het-s*] to [Het-s]. We propose that this transition is the consequence of a self-propagating conformational modification of the protein mediated by the formation of complexes between the two different forms of the polypeptide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitamin D, the major steroid hormone that controls mineral ion homeostasis, exerts its actions through the vitamin D receptor (VDR). The VDR is expressed in many tissues, including several tissues not thought to play a role in mineral metabolism. Studies in kindreds with VDR mutations (vitamin D-dependent rickets type II, VDDR II) have demonstrated hypocalcemia, hyperparathyroidism, rickets, and osteomalacia. Alopecia, which is not a feature of vitamin D deficiency, is seen in some kindreds. We have generated a mouse model of VDDR II by targeted ablation of the second zinc finger of the VDR DNA-binding domain. Despite known expression of the VDR in fetal life, homozygous mice are phenotypically normal at birth and demonstrate normal survival at least until 6 months. They become hypocalcemic at 21 days of age, at which time their parathyroid hormone (PTH) levels begin to rise. Hyperparathyroidism is accompanied by an increase in the size of the parathyroid gland as well as an increase in PTH mRNA levels. Rickets and osteomalacia are seen by day 35; however, as early as day 15, there is an expansion in the zone of hypertrophic chondrocytes in the growth plate. In contrast to animals made vitamin D deficient by dietary means, and like some patients with VDDR II, these mice develop progressive alopecia from the age of 4 weeks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used the interaction between the erythroid-specific enhancer in hypersensitivity site 2 of the human β-globin locus control region and the globin gene promoters as a paradigm to examine the mechanisms governing promoter/enhancer interactions in this locus. We have demonstrated that enhancer-dependent activation of the globin promoters is dependent on the presence of both a TATA box in the proximal promoter and the binding site for the erythroid-specific heteromeric transcription factor NF-E2 in the enhancer. Mutational analysis of the transcriptionally active component of NF-E2, p45NF-E2, localizes the critical region for this function to a proline-rich transcriptional activation domain in the NH2-terminal 80 amino acids of the protein. In contrast to the wild-type protein, expression of p45 NF-E2 lacking this activation domain in an NF-E2 null cell line fails to support enhancer-dependent transcription in transient assays. More significantly, the mutated protein also fails to reactivate expression of the endogenous β- or α-globin loci in this cell line. Protein-protein interaction studies reveal that this domain of p45 NF-E2 binds specifically to a component of the transcription initiation complex, TATA binding protein associated factor TAFII130. These findings suggest one potential mechanism for direct recruitment of distal regulatory regions of the globin loci to the individual promoters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the functional role of different α1-adrenergic receptor (α1-AR) subtypes in vivo, we have applied a gene targeting approach to create a mouse model lacking the α1b-AR (α1b−/−). Reverse transcription–PCR and ligand binding studies were combined to elucidate the expression of the α1-AR subtypes in various tissues of α1b +/+ and −/− mice. Total α1-AR sites were decreased by 98% in liver, 74% in heart, and 42% in cerebral cortex of the α1b −/− as compared with +/+ mice. Because of the large decrease of α1-AR in the heart and the loss of the α1b-AR mRNA in the aorta of the α1b−/− mice, the in vivo blood pressure and in vitro aorta contractile responses to α1-agonists were investigated in α1b +/+ and −/− mice. Our findings provide strong evidence that the α1b-AR is a mediator of the blood pressure and the aorta contractile responses induced by α1 agonists. This was demonstrated by the finding that the mean arterial blood pressure response to phenylephrine was decreased by 45% in α1b −/− as compared with +/+ mice. In addition, phenylephrine-induced contractions of aortic rings also were decreased by 25% in α1b−/− mice. The α1b-AR knockout mouse model provides a potentially useful tool to elucidate the functional specificity of different α1-AR subtypes, to better understand the effects of adrenergic drugs, and to investigate the multiple mechanisms involved in the control of blood pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leptin is a 167-aa protein that is secreted from adipose tissue and is important in the regulation of energy balance. It also functions in hematopoiesis and reproduction. To assess whether leptin is involved in fetal growth and development we have examined the distribution of mRNAs encoding leptin and the leptin receptor (which has at least six splice variants) in the 14.5-day postcoitus mouse fetus and in the placenta using reverse transcription–PCR and in situ hybridization. High levels of gene expression for leptin, the leptin receptor, and the long splice variant of the leptin receptor with an intracellular signaling domain were observed in the placenta, fetal cartilage/bone, and hair follicles. Receptor expression also was detected in the lung, as well as the leptomeninges and choroid plexus of the fetal brain. Western blotting and immunocytochemistry, using specific antibodies, demonstrated the presence of leptin and leptin receptor protein in these tissues. These results suggest that leptin may play a role in the growth and development of the fetus, both through placental and fetal expression of the leptin and leptin receptor genes. In the fetus, leptin may be multifunctional and have both paracrine and endocrine effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tyk2 belongs to the Janus kinase (JAK) family of receptor associated tyrosine kinases, characterized by a large N-terminal region, a kinase-like domain and a tyrosine kinase domain. It was previously shown that Tyk2 contributes to interferon-α (IFN-α) signaling not only catalytically, but also as an essential intracellular component of the receptor complex, being required for high affinity binding of IFN-α. For this function the tyrosine kinase domain was found to be dispensable. Here, it is shown that mutant cells lacking Tyk2 have significantly reduced IFN-α receptor 1 (IFNAR1) protein level, whereas the mRNA level is unaltered. Expression of the N-terminal region of Tyk2 in these cells reconstituted wild-type IFNAR1 level, but did not restore the binding activity of the receptor. Studies of mutant Tyk2 forms deleted at the N terminus indicated that the integrity of the N-terminal region is required to sustain IFNAR1. These studies also showed that the N-terminal region does not directly modulate the basal autophosphorylation activity of Tyk2, but it is required for efficient in vitro IFNAR1 phosphorylation and for rendering the enzyme activatable by IFN-α. Overall, these results indicate that distinct Tyk2 domains provide different functions to the receptor complex: the N-terminal region sustains IFNAR1 level, whereas the kinase-like domain provides a function toward high affinity ligand binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two RNases H of mammalian tissues have been described: RNase HI, the activity of which was found to rise during DNA replication, and RNase HII, which may be involved in transcription. RNase HI is the major mammalian enzyme representing around 85% of the total RNase H activity in the cell. By using highly purified calf thymus RNase HI we identified the sequences of several tryptic peptides. This information enabled us to determine the sequence of the cDNA coding for the large subunit of human RNase HI. The corresponding ORF of 897 nt defines a polypeptide of relative molecular mass of 33,367, which is in agreement with the molecular mass obtained earlier by SDS/PAGE. Expression of the cloned ORF in Escherichia coli leads to a polypeptide, which is specifically recognized by an antiserum raised against calf thymus RNase HI. Interestingly, the deduced amino acid sequence of this subunit of human RNase HI displays significant homology to RNase HII from E. coli, an enzyme of unknown function and previously judged as a minor activity. This finding suggests an evolutionary link between the mammalian RNases HI and the prokaryotic RNases HII. The idea of a mammalian RNase HI large subunit being a strongly conserved protein is substantiated by the existence of homologous ORFs in the genomes of other eukaryotes and of all eubacteria and archaebacteria that have been completely sequenced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ALL-1 gene positioned at 11q23 is directly involved in human acute leukemia either through a variety of chromosome translocations or by partial tandem duplications. ALL-1 is the human homologue of Drosophila trithorax which plays a critical role in maintaining proper spatial and temporal expression of the Antennapedia-bithorax homeotic genes determining the fruit fly’s body pattern. Utilizing specific antibodies, we found that the ALL-1 protein distributes in cultured cells in a nuclear punctate pattern. Several chimeric ALL-1 proteins encoded by products of the chromosome translocations and expressed in transfected cells showed similar speckles. Dissection of the ALL-1 protein identified within its ≈1,100 N-terminal residues three polypeptides directing nuclear localization and at least two main domains conferring distribution in dots. The latter spanned two short sequences conserved with TRITHORAX. Enforced nuclear expression of other domains of ALL-1, such as the PHD (zinc) fingers and the SET motif, resulted in uniform nonpunctate patterns. This indicates that positioning of the ALL-1 protein in subnuclear structures is mediated via interactions of ALL-1 N-terminal elements. We suggest that the speckles represent protein complexes which contain multiple copies of the ALL-1 protein and are positioned at ALL-1 target sites on the chromatin. Therefore, the role of the N-terminal portion of ALL-1 is to direct the protein to its target genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertrophy of mammalian cardiac muscle is mediated, in part, by angiotensin II through an angiotensin II type1a receptor (AT1aR)-dependent mechanism. To understand how the level of AT1aRs is altered in this pathological state, we studied the expression of an injected AT1aR promoter-luciferase reporter gene in adult rat hearts subjected to an acute pressure overload by aortic coarctation. This model was validated by demonstrating that coarctation increased expression of the α-skeletal actin promoter 1.7-fold whereas the α-myosin heavy chain promoter was unaffected. Pressure overload increased expression from the AT1aR promoter by 1.6-fold compared with controls. Mutations introduced into consensus binding sites for AP-1 or GATA transcription factors abolished the pressure overload response but had no effect on AT1aR promoter activity in control animals. In extracts from coarcted hearts, but not from control hearts, a Fos-JunB-JunD complex and GATA-4 were detected in association with the AP-1 and GATA sites, respectively. These results establish that the AT1aR promoter is active in cardiac muscle and its expression is induced by pressure overload, and suggest that this response is mediated, in part, by a functional interaction between AP-1 and GATA-4 transcription factors.