116 resultados para Trypsin inhibitor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human hookworm infection is a major cause of gastrointestinal blood loss and iron deficiency anemia, affecting up to one billion people in the developing world. These soil-transmitted helminths cause blood loss during attachment to the intestinal mucosa by lacerating capillaries and ingesting extravasated blood. We have isolated the major anticoagulant used by adult worms to facilitate feeding and exacerbate intestinal blood loss. This 8.7-kDa peptide, named the Ancylostoma caninum anticoagulant peptide (AcAP), was purified by using a combination of ion-exchange chromatography, gel-filtration chromatography, and reverse-phase HPLC. N-terminal sequencing of AcAP reveals no homology to any previously identified anticoagulant or protease inhibitor. Single-stage chromogenic assays reveal that AcAP is a highly potent and specific inhibitor of human coagulation, with an intrinsic K*i for the inhibition of free factor Xa of 323.5 pM. In plasma-based clotting time assays, AcAP was more effective at prolonging the prothrombin time than both recombinant hirudin and tick anticoagulant peptide. These data suggest that AcAP, a specific inhibitor of factor Xa, is one of the most potent naturally occurring anticoagulants described to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of cell cycle withdrawal during terminal differentiation is poorly understood. We report here that the cyclin-dependent kinase (CDK) inhibitor p21Cip1/WAF1 is induced at early times of both keratinocyte and myoblast differentiation. p21Cip1/WAF1 induction is accompanied by a drastic inhibition of total Cdk2, as well as p21Cip1/WAF1-associated CDK kinase activities. p21Cip1/WAF1 has been implicated in p53-mediated G1 arrest and apoptosis. In keratinocyte differentiation, Cip1/WAF1 induction is observed even in cells derived from p53-null mice. Similarly, keratinocyte differentiation is associated with induction of Cip1/WAF1 promoter activity in both wild-type and p53-negative keratinocytes. Induction of the Cip1/WAF1 promoter upon differentiation is abolished by expression of an adenovirus E1A oncoprotein (d1922/947), which is unable to bind p105-Rb, p107, or cyclin A but which still binds the nuclear phosphoprotein p300. Overexpression of p300 can suppress the E1A effect, independent of its direct binding to E1A. Thus, terminal differentiation-induced growth arrest in both keratinocyte and myoblast systems is associated with induction of Cip1/WAF1 expression. During keratinocyte differentiation, Cip1/WAF1 induction does not require p53 but depends on the transcriptional modulator p300.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transforming growth factor beta s (TGF-beta s) are a group of multifunctional growth factors which inhibit cell cycle progression in many cell types. The TGF-beta-induced cell cycle arrest has been partially attributed to the regulatory effects of TGF-beta on both the levels and the activities of the G1 cyclins and their kinase partners. The activities of these kinases are negatively regulated by a number of small proteins, p21 (WAF1, Cip1), p27Kip1, p16, and p15INK4B, that physically associate with cyclins, cyclin-dependent kinases, or cyclin-Cdk complexes. p21 has been previously shown to be transcriptionally induced by DNA damage through p53 as a mediator. We demonstrate that TGF-beta also causes a rapid transcriptional induction of p21, suggesting that p21 can respond to both intracellular and extracellular signals for cell cycle arrest. In contrast to DNA damage, however, induction of p21 by TGF-beta is not dependent on wild-type p53. The cell line studied in these experiments, HaCaT, contains two mutant alleles of p53, which are unable to activate transcription from the p21 promoter when overexpressed. In addition, TGF-beta and p53 act through distinct elements in the p21 promoter. Taken together, these findings suggest that TGF-beta can induce p21 through a p53-independent pathway. Previous findings have implicated p27Kip1 and p15INK2B as effectors mediating the TGF-beta growth inhibitory effect. These results demonstrate that a single extracellular antiproliferative signal, TGF-beta, can act through multiple signaling pathways to elicit a growth arrest response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viruses such as human immunodeficiency virus (HIV) require cellular activation for expression. Cellular activation in lymphoid cells is associated with augmented accumulation of certain phosphatidic acid (PA) species derived from the hydrolysis of glycan phosphatidylinositol (GPI). This suggests that activation of a phospholipid pathway may play a role in initiation of viral replication. To test this hypothesis, we examined the effect of tat gene expression on the production of cellular PA species, as the Tat protein is essential for HIV expression and has been implicated in activating the expression of multiple host cellular genes. Expression of tat increased the expression of PA. We then tested whether synthetic inhibitors of PA metabolism would inhibit activation of the HIV long terminal repeat by Tat and tumor necrosis factor alpha (TNF-alpha). CT-2576 suppressed both PA generation induced by Tat and HIV long terminal repeat-directed gene expression in response to Tat or TNF-alpha at a posttranscriptional step. CT-2576 also inhibited constitutive as well as TNF-alpha- and interleukin 6-induced expression of HIV p24 antigen in chronically infected U1 cells and in peripheral blood lymphocytes acutely infected with a clinical isolate of HIV. Pharmacological inhibition of synthesis of selected PA species may therefore provide a therapeutic approach to suppression of HIV replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical and physical signals have been reported to mediate wound-induced proteinase inhibitor II (Pin2) gene expression in tomato and potato plants. Among the chemical signals, phytohormones such as abscisic acid (ABA) and jasmonic acid (JA) and the peptide systemin represent the best characterized systems. Furthermore, electrical and hydraulic mechanisms have also been postulated as putative Pin2-inducing systemic signals. Most of the chemical agents are able to induce Pin2 gene expression without any mechanical wounding. Thus, ABA, JA, and systemin initiate Pin2 mRNA accumulation in the directly treated leaves and in the nontreated leaves (systemic) that are located distal to the treated ones. ABA-deficient tomato and potato plants do not respond to wounding by accumulation of Pin2 mRNA, therefore providing a suitable model system for analysis of the signal transduction pathway involved in wound-induced gene activation. It was demonstrated that the site of action of JA is located downstream to the site of action of ABA. Moreover, systemin represents one of the initial steps in the signal transduction pathway regulating the wound response. Recently, it was reported that heat treatment and mechanical injury generate electrical signals, which propagate throughout the plant. These signals are capable of inducing Pin2 gene expression in the nontreated leaves of wounded plants. Furthermore, electrical current application to tomato leaves leads to an accumulation of Pin2 mRNA in local and systemic tissues. Examination of photosynthetic parameters (assimilation and transpiration rate) on several types of stimuli suggests that heat-induced Pin2 gene expression is regulated by an alternative pathway from that mediating the electrical current and mechanical wound response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites pose a threat to the health and lives of many millions of human beings. Among the pathogenic protozoa, Trypanosoma brucei, Trypanosoma cruzi, and Leishmania donovani are hemoflagellates that cause particularly serious diseases (sleeping sickness, Chagas disease, and leishmaniasis, respectively). The drugs currently available to treat these infections are limited by marginal efficacy, severe toxicity, and spreading drug resistance. Camptothecin is an established antitumor drug and a well-characterized inhibitor of eukaryotic DNA topoisomerase I. When trypanosomes or leishmania are treated with camptothecin and then lysed with SDS, both nuclear and mitochondrial DNA are cleaved and covalently linked to protein. This is consistent with the existence of drug-sensitive topoisomerase I activity in both compartments. Camptothecin also inhibits the incorporation of [3H]thymidine in these parasites. These molecular effects are cytotoxic to cells in vitro, with EC50 values for T. brucei, T. cruzi, and L. donovani, of 1.5, 1.6, and 3.2 microM, respectively. For these parasites, camptothecin is an important lead for much-needed new chemotherapy, as well as a valuable tool for studying topoisomerase I activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The squamous cell carcinoma antigen (SCCA) is a member of the ovalbumin family of serine proteinase inhibitors (serpins). A neutral form of the protein is found in normal and some malignant squamous cells, whereas an acidic form is detected exclusively in tumor cells and in the circulation of patients with squamous cell tumors. In this report, we describe the cloning of the SCCA gene from normal genomic DNA. Surprisingly, two genes were found. They were tandemly arrayed and flanked by two other closely related serpins, plasminogen activator inhibitor type 2 (PAI2) and maspin at 18q21.3. The genomic structure of the two genes, SCCA1 and SCCA2, was highly conserved. The predicted amino acid sequences were 92% identical and suggested that the neutral form of the protein was encoded by SCCA1 and the acidic form was encoded by SCCA2. Further characterization of the region should determine whether the differential expression of the SCCA genes plays a causal role in development of more aggressive squamous cell carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A folate analogue, 1843U89 (U89), with potential as a chemotherapeutic agent due to its potent and specific inhibition of thymidylate synthase (TS; EC 2.1.1.45), greatly enhances not only the binding of 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) and dUMP to Escherichia coli TS but also that of dGMP, GMP, dIMP, and IMP. Guanine nucleotide binding was first detected by CD analysis, which revealed a unique spectrum for the TS-dGMP-U89 ternary complex. The quantitative binding of dGMP relative to GMP, FdUMP, and dUMP was determined in the presence and absence of U89 by ultrafiltration analysis, which revealed that although the binding of GMP and dGMP could not be detected in the absence of U89 both were bound in its presence. The Kd for dGMP was about the same as that for dUMP and FdUMP, with binding of the latter two nucleotides being increased by two orders of magnitude by U89. An explanation for the binding of dGMP was provided by x-ray diffraction studies that revealed an extensive stacking interaction between the guanine of dGMP and the benzoquinazoline ring of U89 and hydrogen bonds similar to those involved in dUMP binding. In addition, binding energy was provided through a water molecule that formed hydrogen bonds to both N7 of dGMP and the hydroxyl of Tyr-94. Accommodation of the larger dGMP molecule was accomplished through a distortion of the active site and a shift of the deoxyribose moiety to a new position. These rearrangements also enabled the binding of GMP to occur by creating a pocket for the ribose 2' hydroxyl group, overcoming the normal TS discrimination against nucleotides containing the 2' hydroxyl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system that serves as a model for the human disease multiple sclerosis. We evaluated rolipram, a type IV phosphodiesterase inhibitor, for its efficacy in preventing EAE in the common marmoset Callithrix jacchus. In a blinded experimental design, clinical signs of EAE developed within 17 days of immunization with human white matter in two placebo-treated animals but in none of three monkeys that received rolipram (10 mg/kg s.c. every other day) beginning 1 week after immunization. In controls, signs of EAE were associated with development of cerebrospinal fluid pleocytosis and cerebral MRI abnormalities. In the treatment group, there was sustained protection from clinical EAE, transient cerebrospinal fluid pleocytosis in only one of three animals, no MRI abnormality, and marked reduction in histopathologic findings. Rolipram-treated and control animals equally developed circulating antibodies to myelin basic protein. Thus, inhibition of type IV phosphodiesterase, initiated after sensitization to central nervous system antigens, protected against autoimmune demyelinating disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examination of the structural basis for antiviral activity, oral pharmacokinetics, and hepatic metabolism among a series of symmetry-based inhibitors of the human immunodeficiency virus (HIV) protease led to the discovery of ABT-538, a promising experimental drug for the therapeutic intervention in acquired immunodeficiency syndrome (AIDS). ABT-538 exhibited potent in vitro activity against laboratory and clinical strains of HIV-1 [50% effective concentration (EC50) = 0.022-0.13 microM] and HIV-2 (EC50 = 0.16 microM). Following a single 10-mg/kg oral dose, plasma concentrations in rat, dog, and monkey exceeded the in vitro antiviral EC50 for > 12 h. In human trials, a single 400-mg dose of ABT-538 displayed a prolonged absorption profile and achieved a peak plasma concentration in excess of 5 micrograms/ml. These findings demonstrate that high oral bioavailability can be achieved in humans with peptidomimetic inhibitors of HIV protease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The platelet-derived growth factor (PDGF) receptor is a member of the transmembrane growth factor receptor protein family with intrinsic protein-tyrosine kinase activity. We describe a potent protein-tyrosine kinase inhibitor (CGP 53716) that shows selectivity for the PDGF receptor in vitro and in the cell. The compound shows selectivity for inhibition of PDGF-mediated events such as PDGF receptor autophosphorylation, cellular tyrosine phosphorylation, and c-fos mRNA induction in response to PDGF stimulation of intact cells. In contrast, ligand-induced autophosphorylation of the epidermal growth factor (EGF) receptor, insulin receptor, and the insulin-like growth factor I receptor, as well as c-fos mRNA expression induced by EGF, fibroblast growth factor, and phorbol ester, was insensitive to inhibition by CGP 53716. In antiproliferative assays, the compound was approximately 30-fold more potent in inhibiting PDGF-mediated growth of v-sis-transformed BALB/c 3T3 cells relative to inhibition of EGF-dependent BALB/Mk cells, interleukin-3-dependent FDC-P1 cells, and the T24 bladder carcinoma line. When tested in vivo using highly tumorigenic v-sis- and human c-sis-transformed BALB/c 3T3 cells, CGP 53716 showed antitumor activity at well-tolerated doses. In contrast, CGP 53716 did not show antitumor activity against xenografts of the A431 tumor, which overexpresses the EGF receptor. These findings suggest that CGP 53716 may have therapeutic potential for the treatment of diseases involving abnormal cellular proliferation induced by PDGF receptor activation.