124 resultados para TROPHECTODERM DIFFERENTIATION
Resumo:
We analyzed the developmental regulation and role of the neurotrophins during metanephric kidney morphogenesis. RNase protection assay revealed the presence of nerve growth factor, neurotrophin 3 (NT-3), and brain-derived neurotrophic factor mRNAs and the regulation of their expression during embryonic development of rat metanephros. NT-3 induced differentiation (neurite outgrowth) and survival (inhibition of apoptosis) of the neuronal precursors in cultured nephrogenic mesenchymes and neuronal differentiation in cultured whole kidneys, whereas NT-4/5, brain-derived neurotrophic factor, and nerve growth factor were without effect. The neurotrophins did not trigger tubular differentiation of isolated nephrogenic cells, which underwent apoptosis when cultured with or without the neurotrophins. NT-3 is thus an inducer of differentiation and a survival factor for renal neuronal cells, but none of the neurotrophins is a morphogen in kidney tubule induction.
Resumo:
The mechanisms by which insulin-like growth factors (IGFs) can be both mitogenic and differentiation-promoting in skeletal myoblasts are unclear because these two processes are believed to be mutually exclusive in this tissue. The phosphorylation state of the ubiquitous nuclear retinoblastoma protein (Rb) plays an important role in determining whether myoblasts proliferate or differentiate: Phosphorylated Rb promotes mitogenesis, whereas un- (or hypo-) phosphorylated Rb promotes cell cycle exit and differentiation. We hypothesized that IGFs might affect the fate of myoblasts by regulating the phosphorylation of Rb. Although long-term IGF treatment is known to stimulate differentiation, we find that IGFs act initially to inhibit differentiation and are exclusively mitogenic. These early effects of IGFs are associated with maintenance of Rb phosphorylation typical of proliferating cells; upregulation of the gene expression of cyclin-dependent kinase 4 and cyclin D1, components of a holoenzyme that plays a principal role in mediating Rb phosphorylation; and marked inhibition of the gene expression of myogenin, a member of the MyoD family of skeletal muscle-specific transcription factors that is essential in muscle differentiation. We also find that IGF-induced inhibition of differentiation occurs through a process that is independent of its mitogenic effects. We demonstrate, thus, that IGFs regulate Rb phosphorylation and cyclin D1 and cyclin-dependent kinase 4 gene expression; together with their biphasic effects on myogenin expression, these results suggest a mechanism by which IGFs are initially mitogenic and subsequently differentiation-promoting in skeletal muscle.
Resumo:
Eukaryotic chromosomes terminate with long stretches of short, guanine-rich repeats. These repeats are added de novo by a specialized enzyme, telomerase. In humans telomeres shorten during differentiation, presumably due to the absence of telomerase activity in somatic cells. This phenomenon forms the basis for several models of telomere role in cellular senescence. Barley (Hordeum vulgare L.) telomeres consist of thousands of TTTAGGG repeats, closely resembling other higher eukaryotes. In vivo differentiation and aging resulted in reduction of terminal restriction fragment length paralleled by a decrease of telomere repeat number. Dedifferentiation in callus culture resulted in an increase of the terminal restriction fragment length and in the number of telomere repeats. Long-term callus cultures had very long telomeres. Absolute telomere lengths were genotype dependent, but the relative changes due to differentiation, dedifferentiation, and long-term callus culture were consistent among genotypes. A model is presented to describe the potential role of the telomere length in regulation of a cell's mitotic activity and senescence.
Resumo:
Early neurogenesis progresses by an initial massive proliferation of neuroepithelial cells followed by a sequential differentiation of the various mature neural cell types. The regulation of these processes by growth factors is poorly understood. We intend to understand, in a well-defined biological system, the embryonic chicken retina, the role of the insulin-related growth factors in neurogenesis. We demonstrate the local presence of signaling elements together with a biological response to the factors. Neuroretina at days 6-8 of embryonic development (E6-E8) expressed proinsulin/insulin and insulin-like growth factor I (IGF-I) mRNAs as well as insulin receptor and IGF type I receptor mRNAs. In parallel with this in vivo gene expression, E5 cultured neuroretinas synthesized and released to the medium a metabolically radiolabeled immunoprecipitable insulin-related peptide. Furthermore, insulin-related immunoreactive material with a HPLC mobility close to that of proinsulin was found in the E6-E8 vitreous humor. Exogenous chicken IGF-I, human insulin, and human proinsulin added to E6 cultured neuroretinas showed relatively close potencies stimulating proliferation, as determined by [methyl-3H]thymidine incorporation, with a plateau reached at 10(-8) M. These factors also stimulated neuronal differentiation, indicated by the expression of the neuron-specific antigen G4. Thus, insulin-related growth factors, interestingly including proinsulin, are present in the developing chicken retina and appear to play an autocrine/paracrine stimulatory role in the progression of neurogenesis.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) promotes survival of midbrain dopaminergic neurons and motoneurons. Expression of GDNF mRNA in cerebellum raises the possibility that cells within this structure might also respond to GDNF. To examine potential trophic activities of GDNF, dissociated cultures of gestational day 18 rat cerebellum were grown for < or = 21 days in the presence of factor. GDNF increased Purkinje cell number without affecting the overall number of neurons or glial cells. A maximal response (50% above control) was elicited with GDNF at 1 pg/ml. Effects of GDNF on Purkinje cell differentiation were examined by scoring the morphologic maturation of cells in treated and control cultures. GDNF increased the proportion of Purkinje cells that displayed relatively mature morphologies, characterized by dendritic thickening and the development of spines and filopodial extensions. Morphologic maturation of the overall neuronal population was unaffected. In sum, our data indicate that GDNF is a potent survival and differentiation factor for Purkinje cells, the efferent neurons of cerebellar cortex. Together with its other actions, these findings raise the possibility that GDNF might be a critical trophic factor at multiple loci in neuronal circuits that control motor function.
Resumo:
Treatment of the human promyelocytic leukemia cell line HL-60 with antisense oligodeoxynucleotides to UDP-N-acetylgalactosamine:beta-1,4-N-acetylgalactosaminyl-transferase (GM2-synthase; EC 2.4.1.92) and CMP-sialic acid:alpha-2,8-sialyltransferase (GD3-synthase; EC 2.4.99.8) sequences effectively down-regulated the synthesis of more complex gangliosides in the ganglioside synthetic pathways after GM3, resulting in a remarkable increase in endogenous GM3 with concomitant decreases in more complex gangliosides. The treated cells underwent monocytic differentiation as judged by morphological changes, adherent ability, and nitroblue tetrazolium staining. These data provide evidence that the increased endogenous ganglioside GM3 may play an important role in regulating cellular differentiation and that the antisense DNA technique proves to be a powerful tool in manipulating glycolipid synthesis in the cell.
Resumo:
A sequence of epithelial cell proliferation, allocation to four principal lineages, migration-associated differentiation, and cell loss occurs along the crypt-villus axis of the mouse intestine. The sequence is completed in a few days and is recapitulated throughout the life-span of the animal. We have used an intestine-specific fatty acid binding protein gene, Fabpi, as a model for studying regulation of gene expression in this unique developmental system. Promoter mapping studies in transgenic mice identified a 20-bp cis-acting element (5'-AGGTGGAAGCCATCACACTT-3') that binds small intestinal nuclear proteins and participates in the control of Fabpi's cephalocaudal, differentiation-dependent, and cell lineage-specific patterns of expression. Immunocytochemical studies using confocal and electron microscopy indicate that it does so by acting as a suppressor of gene expression in the distal small intestine/colon, as a suppressor of gene activation in proliferating and nonproliferating cells located in the crypts of Lieberkühn, and as a suppressor of expression in the growth factor and defensin-producing Paneth cell lineage. The 20-bp domain has no obvious sequence similarities to known transcription factor binding sites. The three functions modulated by this compact element represent the types of functions required to establish and maintain the intestine's remarkably complex spatial patterns of gene expression. The transgenes described in this report also appear to be useful in characterizing the crypt's stem cell hierarchy.
Resumo:
When Dictyostelium discoideum cells are drawn into a fine glass capillary, they rapidly begin the first steps toward the formation of prestalk and prespore zones. Some of the events occur within a minute or two, whereas others follow later. The cells in the front segment are actively motile and those in the hind segment are passive. The volumes of the segments are proportional for different-sized cell masses, and those proportions are the same as those found in normal slugs. When the cells are stained with the vital dye neutral red, the anterior zone becomes darker simultaneously with the formation of the division line. Green fluorescent protein expressed from a stalk-specific promoter is synthesized mostly in the anterior end. Later, this capillary prestalk zone shows a sharp increase in alkaline phosphatase activity, which is known to be characteristic of prestalk cells.
Resumo:
The positive effects of Myc on cellular growth and gene expression are antagonized by activities of another member of the Myc superfamily, Mad. Characterization of the mouse homolog of human mad on the structural level revealed that domains shown previously to be required in the human protein for anti-Myc repression, sequence-specific DNA-binding activity, and dimerization with its partner Max are highly conserved. Conservation is also evident on the biological level in that both human and mouse mad can antagonize the ability of c-myc to cooperate with ras in the malignant transformation of cultured cells. An analysis of c-myc and mad gene expression in the developing mouse showed contrasting patterns with respect to tissue distribution and developmental stage. Regional differences in expression were more striking on the cellular level, particularly in the mouse and human gastrointestinal system, wherein c-Myc protein was readily detected in immature proliferating cells at the base of the colonic crypts, while Mad protein distribution was restricted to the postmitotic differentiated cells in the apex of the crypts. An increasing gradient of Mad was also evident in the more differentiated subcorneal layers of the stratified squamous epithelium of the skin. Together, these observations support the view that both downregulation of Myc and accumulation of Mad may be necessary for progression of precursor cells to a growth-arrested, terminally differentiated state.
Resumo:
Chronic myelogenous leukemia evolves in two clinically distinct stages: a chronic and a blast crisis phase. The molecular changes associated with chronic phase to blast crisis transition are largely unknown. We have identified a cDNA clone, DR-nm23, differentially expressed in a blast-crisis cDNA library, which has approximately 70% sequence similarity to the putative metastatic suppressor genes, nm23-H1 and nm23-H2. The deduced amino acid sequence similarity to the proteins encoded by these two latter genes is approximately 65% and includes domains and amino acid residues (the leucine zipper-like and the RGD domain, a serine and a histidine residue in the NH2- and in the COOH-terminal portion of the protein, respectively) postulated to be important for nm23 function. DR-nm23 mRNA is preferentially expressed at early stages of myeloid differentiation of highly purified CD34+ cells. Its constitutive expression in the myeloid precursor 32Dc13 cell line, which is growth-factor dependent for both proliferation and differentiation, results in inhibition of granulocytic differentiation induced by granulocyte colony-stimulating factor and causes apoptotic cell death. These results are consistent with a role for DR-nm23 in normal hematopoiesis and raise the possibility that its overexpression contributes to differentiation arrest, a feature of blastic transformation in chronic myelogenous leukemia.
Resumo:
Transcription factor NF-E2 activity is thought to be crucial for the transcriptional regulation of many erythroid-specific genes. The three small Maf family proteins (MafF, MafG, and MafK) that are closely related to the c-Maf protooncoprotein constitute half of the NF-E2 activity by forming heterodimers with the large tissue-restricted subunit of NF-E2 called p45. We have established and characterized murine erythroleukemia cells that conditionally overexpress MafK from a metallothionein promoter. The conditional expression of MafK caused accumulation of hemoglobin, an indication of terminal differentiation along the erythroid pathway. Concomitantly, DNA binding activities containing MafK were induced within the MafK-overexpressing cells. These results demonstrate that MafK can promote the erythroid differentiation program in erythroleukemia cells and suggest that the small Maf family proteins are key regulatory molecules for erythroid differentiation.
Resumo:
We have developed an in vitro model of the isolated chicken neural plate. Here we demonstrate that even in the absence of notochord, the neural plate rapidly develops a typical dorsoventral patterning. This observation suggests that the ventral cell types are specified or at least predetermined prior to notochord formation and that permissive conditions are sufficient for differentiation of ventral structures. Treatment of the neural plate with activin A extinguishes Pax-6 gene expression, whereas the dorsal markers Pax-3 and Pax-7 are still expressed. The absence of Pax-6 transcripts can be correlated with an impeded differentiation of the motor neurons, whereas the floor plate seems to be enlarged. We propose that the region-specific expression of Pax-6 in the spinal cord is under the control of activin-like molecules.
Resumo:
In most allopolyploid plants, only homogenetic chromosome pairing occurs in meiosis, as a result of the recognition of genome differentiation by the genetic system regulating meiotic chromosome pairing. The nature of differentiation between chromosomes of closely related genomes is examined here by investigating recombination between wheat chromosome 1A and the closely related homoeologous chromosome 1Am of Triticum monococcum. The recognition of the differentiation between these chromosomes by the Ph1 locus, which prevents heterogenetic chromosome pairing in wheat, is also investigated. Chromosomes 1A and 1Am are shown to be colinear, and it is concluded that they are differentiated "substructurally." This substructural differentiation is argued to be recognized by the Ph1 locus. In the absence of Ph1, the distribution and frequencies of crossing over between the 1A and 1Am homoeologues were similar to the distribution and frequencies of crossing over between 1A homologues. The cytogenetic and evolutionary significance of these findings is discussed.
Resumo:
If deprived of wild-type p53 function, the body loses a guardian that protects against cancer. Restoration of p53 function has, therefore, been proposed as a means of counteracting oncogenesis. This concept of therapy requires prior knowledge with regard to proper balance of p53 function in a given target tissue. We have addressed this problem by targeting expression of the wild-type human p53 gene to the lens, a tissue entirely composed of epithelial cells that differentiate into elongated fiber cells. Transgenic mice expressing wild-type human p53 develop microphthalmia as a result of a defect in fiber formation that sets in shortly after birth. We see apoptotic cells that fail to undergo proper differentiation. In an effort to directly link the observed lens phenotype to the activity of the wild-type human p53 transgene, we also generated mice expressing a mutant human p53 allele that lacks wild-type function. A normal lens phenotype is restored in double transgenic animals that carry both wild-type and mutant human p53 alleles. Our study highlights the difficulties that can arise if p53 levels are improperly balanced in a differentiating tissue.
Resumo:
The mechanism of cell cycle withdrawal during terminal differentiation is poorly understood. We report here that the cyclin-dependent kinase (CDK) inhibitor p21Cip1/WAF1 is induced at early times of both keratinocyte and myoblast differentiation. p21Cip1/WAF1 induction is accompanied by a drastic inhibition of total Cdk2, as well as p21Cip1/WAF1-associated CDK kinase activities. p21Cip1/WAF1 has been implicated in p53-mediated G1 arrest and apoptosis. In keratinocyte differentiation, Cip1/WAF1 induction is observed even in cells derived from p53-null mice. Similarly, keratinocyte differentiation is associated with induction of Cip1/WAF1 promoter activity in both wild-type and p53-negative keratinocytes. Induction of the Cip1/WAF1 promoter upon differentiation is abolished by expression of an adenovirus E1A oncoprotein (d1922/947), which is unable to bind p105-Rb, p107, or cyclin A but which still binds the nuclear phosphoprotein p300. Overexpression of p300 can suppress the E1A effect, independent of its direct binding to E1A. Thus, terminal differentiation-induced growth arrest in both keratinocyte and myoblast systems is associated with induction of Cip1/WAF1 expression. During keratinocyte differentiation, Cip1/WAF1 induction does not require p53 but depends on the transcriptional modulator p300.