156 resultados para Replication forks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human cytomegalovirus (CMV) replication begins with the expression of two regulatory proteins, IE1(491aa) and IE2(579aa), produced from differentially spliced transcripts under control of the ie1/ie2 promoter-enhancer. A deletion mutation removing all 406 IE1(491aa)-specific amino acids was engineered into the viral genome and this mutant (RC303 delta Acc) was propagated on an IE1(491aa)-expressing human fibroblast cell line (ihfie1.3). RC303 delta Acc failed to replicate on normal human fibroblasts at low multiplicities of infection (mois). At mois > 3 plaque-forming units per cell, virus replication and production of progeny were comparable to wild type. However, at mois between 0.01 and 1, mutant virus replicated slowly on normal fibroblasts, a pattern that suggested initiation of productive infection required multiple hits. Replication of RC303 delta Acc correlated with the ability to express IE2(579aa), consistent with a role for IE1(491aa) in positive autoregulation of the ie1/ie2 promoter-enhancer and with data suggesting that virion transactivators compensate for the lack of IE1(491aa) under high moi conditions. ie1-deficient CMV should be completely avirulent, suggesting its utility as a gene therapy vector for hematopoietic progenitors that are normal sites of CMV latency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two classes of RNA ligands that bound to separate, high affinity nucleic acid binding sites on Q beta replicase were previously identified. RNA ligands to the two sites, referred to as site I and site II, were used to investigate the molecular mechanism of RNA replication employed by the four-subunit replicase. Replication inhibition by site I- and site II-specific ligands defined two subsets of replicatable RNAs. When provided with appropriate 3' ends, ligands to either site served as replication templates. UV crosslinking experiments revealed that site I is associated with the S1 subunit, site II with elongation factor Tu, and polymerization with the viral subunit of the holoenzyme. These results provide the framework for a three site model describing template recognition and product strand initiation by Q beta replicase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that three distinct DNA-binding activities, in crude form, are necessary for the ATP-dependent assembly of a specific and stable multiprotein complex at a yeast origin of replication. Here we show the purification of one of these DNA binding activities, referred to as origin binding factor 2 (OBF2). The purified protein is a heterodimer composed of two polypeptides with molecular mass values of 65 and 80 kDa as determined by SDS/PAGE. Purified OBF2 not only binds DNA but also supports the formation of a protein complex at essential sequences within the ARS121 origin of replication. Interestingly, OBF2 binds tightly and nonspecifically to both duplex DNA and single-stranded DNA. The interaction with duplex DNA occurs at the termini. N-terminal sequencing of the 65-kDa subunit has revealed that this polypeptide is identical to the previously identified HDF1 peptide, a yeast homolog of the small subunit of the mammalian Ku autoantigen. Although the potential involvement of Ku in DNA metabolic events has been proposed, this is the first requirement for a Ku-like protein in the assembly of a protein complex at essential sequences within a eukaryotic origin of replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fen1 or maturation factor 1 is a 5'-3' exonuclease essential for the degradation of the RNA primer-DNA junctions at the 5' ends of immature Okazaki fragments prior to their ligation into a continuous DNA strand. The gene is also necessary for repair of damaged DNA in yeast. We report that human proliferating-cell nuclear antigen (PCNA) associates with human Fen1 with a Kd of 60 nM and an apparent stoichiometry of three Fen1 molecules per PCNA trimer. The Fen1-PCNA association is seen in cell extracts without overexpression of either partner and is mediated by a basic region at the C terminus of Fen1. Therefore, the polymerase delta-PCNA-Fen1 complex has all the activities associated with prokaryotic DNA polymerases involved in replication: 5'-3' polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. Although p21, a regulatory protein induced by p53 in response to DNA damage, interacts with PCNA with a comparable Kd (10 nM) and a stoichiometry of three molecules of p21 per PCNA trimer, a p21-PCNA-Fen1 complex is not formed. This mutually exclusive interaction suggests that the conformation of a PCNA trimer switches such that it can either bind p21 or Fen1. Furthermore, overexpression of p21 can disrupt Fen1-PCNA interaction in vivo. Therefore, besides interfering with the processivity of polymerase delta-PCNA, p21 also uncouples Fen1 from the PCNA scaffold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replication terminator protein (RTP) of Bacillus subtilis is a homodimer that binds to each replication terminus and impedes replication fork movement in only one orientation with respect to the replication origin. The three-dimensional structure of the RTP-DNA complex needs to be determined to understand how structurally symmetrical dimers of RTP generate functional asymmetry. The functional unit of each replication terminus of Bacillus subtilis consists of four turns of DNA complexed with two interacting dimers of RTP. Although the crystal structure of the RTP apoprotein dimer has been determined at 2.6-A resolution, the functional unit of the terminus is probably too large and too flexible to lend itself to cocrystallization. We have therefore used an alternative strategy to delineate the three dimensional structure of the RTP-DNA complex by converting the protein into a site-directed chemical nuclease. From the pattern of base-specific cleavage of the terminus DNA by the chemical nuclease, we have mapped the amino acid to base contacts. Using these contacts as distance constraints, with the crystal structure of RTP, we have constructed a model of the DNA-protein complex. The biological implications of the model have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defective-interfering viruses are known to modulate virus pathogenicity. We describe conditionally replicating HIV-1 (crHIV) vectors that interfere with wild-type HIV-1 (wt-HIV) replication and spread. crHIV vectors are defective-interfering HIV genomes that do not encode viral proteins and replicate only in the presence of wt-HIV helper virus. In cells that contain both wt-HIV and crHIV genomes, the latter are shown to have a selective advantage for packaging into progeny virions because they contain ribozymes that cleave wt-HIV RNA but not crHIV RNA. A crHIV vector containing a triple anti-U5 ribozyme significantly interferes with wt-HIV replication and spread. crHIV vectors are also shown to undergo the full viral replicative cycle after complementation with wt-HIV helper-virus. The application of defective interfering crHIV vectors may result in competition with wt-HIVs and decrease pathogenic viral loads in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A minichromosome maintenance (MCM) protein complex has been implicated in restricting DNA replication to once per cell cycle in Xenopus egg extracts, based on the behavior of a single protein, XMCM3. Using a two-hybrid screen with XMCM3, we have identified a novel member of the MCM family in Xenopus that is essential for DNA replication. The protein shows strong homology to Saccharomyces cerevisiae MCM7 (CDC47) and has thus been named XMCM7. XMCM7 is present in a multiprotein complex with other MCM proteins. It binds to chromatin and is displaced from chromatin by the act of replication. XMCM7 does not preferentially colocalize with sites of DNA replication but colocalizes with XMCM3 throughout replication. Immunodepletion of the MCM complex from Xenopus egg extract by anti-XMCM7 antibodies inhibits DNA replication of sperm and permeable HeLa G2 nuclei but not permeable HeLa G1 nuclei. Replication capacity of the Xenopus egg extract immunodepleted of the MCM complex by anti-XMCM7 antibody can be rescued by MCM proteins eluted from anti-XMCM3 antibody. We conclude that both proteins are present in the same complex in Xenopus egg extract throughout the cell cycle, that they remain together after binding to chromatin and during DNA replication, and that they perform similar functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agrobacterium tumefaciens, a bacterial plant pathogen, when transformed with plasmid constructs containing greater than unit length DNA of tomato leaf curl geminivirus accumulates viral replicative form DNAs indistinguishable from those produced in infected plants. The accumulation of the viral DNA species depends on the presence of two origins of replication in the DNA constructs and is drastically reduced by introducing mutations into the viral replication-associated protein (Rep or C1) ORF, indicating that an active viral replication process is occurring in the bacterial cell. The accumulation of these viral DNA species is not affected by mutations or deletions in the other viral open reading frames. The observation that geminivirus DNA replication functions are supported by the bacterial cellular machinery provides evidence for the theory that these circular single-stranded DNA viruses have evolved from prokaryotic episomal replicons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we describe the first instances to our knowledge of animal virus genome replication, and of de novo synthesis of infectious virions by a nonendogenous virus, in the yeast Saccharomyces cerevisiae, whose versatile genetics offers significant advantages for studying viral replication and virus-host interactions. Flock house virus (FHV) is the most extensively studied member of the Nodaviridae family of (+) strand RNA animal viruses. Transfection of yeast with FHV genomic RNA induced viral RNA replication, transcription, and assembly of infectious virions. Genome replication and virus synthesis were robust: all replicating FHV RNA species were readily detected in yeast by Northern blot analysis and yields of virions per cell were similar to those from Drosophila cells. We also describe in vivo expression and maintenance of a selectable yeast marker gene from an engineered FHV RNA derivative dependent on FHV-directed RNA replication. Use of these approaches with FHV and their possible extension to other viruses should facilitate identification and characterization of host factors required for genomic replication, gene expression, and virion assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccinia virus is a complex DNA virus that exhibits significant genetic and physical autonomy from the host cell. Most if not all of the functions involved in replication and transcription of the 192-kb genome are virally encoded. Although significant progress has been made in identifying trans-acting factors involved in DNA synthesis, the mechanism of genome replication has remained poorly understood. The genome is a linear duplex with covalently closed hairpin termini, and it has been presumed that sequences and/or structures within these termini are important for the initiation of genome replication. In this report we describe the construction of minichromosomes containing a central plasmid insert flanked by hairpin termini derived from the viral genome and their use as replication templates. When replication of these minichromosomes was compared with a control substrate containing synthetic hairpin termini, specificity for viral telomeres was apparent. Inclusion of > or = 200 bp from the viral telomere was sufficient to confer optimal replication efficiency, whereas 65-bp telomeres were not effective. Chimeric 200-bp telomeres containing the 65-bp terminal element and 135 bp of ectopic sequence also failed to confer efficient replication, providing additional evidence that telomere function is sequence-specific. Replication of these exogenous templates was dependent upon the viral replication machinery, was temporally coincident with viral replication, and generated covalently closed minichromosome products. These data provide compelling evidence for specificity in template recognition and utilization in vaccinia virus-infected cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All eukaryotes use feedback controls to order and coordinate cell cycle events. In Schizosaccharomyces pombe, several classes of checkpoint genes serve to ensure that DNA replication is complete and free of error before the onset of mitosis. Wild-type cells normally arrest upon inhibition of DNA synthesis or in response to DNA damage, although the exact mechanisms controlling this arrest are unclear. Genetic evidence in fission yeast suggests that the dependence of mitosis upon completion of DNA replication is linked to the regulation of the p34cdc2 cyclin-dependent kinase. It has been hypothesized that inhibition of DNA synthesis triggers down-regulation of p34cdc2 kinase activity, although this has never been shown biochemically. We analyzed the activity of p34cdc2 in wild-type and checkpoint-defective cells treated with a DNA synthesis inhibitor. Using standard in vitro assays we demonstrate that p34cdc2 kinase activity is maintained in wild-type cells arrested at the replication checkpoint. We also used a novel in vivo assay for p34cdc2 kinase activity, in which we expressed a fragment of the human retinoblastoma tumor suppressor protein in fission yeast. Phosphorylation of this fragment of the human retinoblastoma tumor suppressor protein is dependent on p34cdc2 kinase activity, and this activity is also maintained in cells arrested at the replication checkpoint. These data suggest that the mechanism for cell-cycle arrest in response to incomplete DNA synthesis is not dependent on the attenuation of p34cdc2 activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroviruses undergo a high frequency of genetic alterations during the process of copying their RNA genomes. However, little is known about the replication fidelity of other elements that transpose via reverse transcription of an RNA intermediate. The complete sequence of 29 independently integrated copies of the yeast retrotransposon Ty1 (173,043 nt) was determined, and the mutation rate during a single cycle of replication was calculated. The observed base substitution rate of 2.5 x 10(-5) bp per replication cycle suggests that this intracellular element can mutate as rapidly as retroviruses. The pattern and distribution of errors in the Ty1 genome is nonrandom and provides clues to potential in vivo molecular mechanisms of reverse transcriptase-mediated error generation, including heterogeneous RNase H cleavage of Ty1 RNA, addition of terminal nontemplated bases, and transient dislocation and realignment of primer-templates. Overall, analysis of errors generated during Ty1 replication underscores the utility of a genetically tractable model system for the study of reverse transcriptase fidelity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replication of double-stranded plasmids containing a single adduct was analyzed in vivo by means of a sequence heterology that marks the two DNA strands. The single adduct was located within the sequence heterology, making it possible to distinguish trans-lesion synthesis (TLS) events from damage avoidance events in which replication did not proceed through the lesion. When the SOS system of the host bacteria is not induced, the C8-guanine adduct formed by the carcinogen N-2-acetylaminofluorene (AAF) yields less than 1% of TLS events, showing that replication does not readily proceed through the lesion. In contrast, the deacetylated adduct N-(deoxyguanosin-8-yl)-2-aminofluorene yields approximately 70% of TLS events under both SOS-induced and uninduced conditions. These results for TLS in vivo are in good agreement with the observation that AAF blocks DNA replication in vitro, whereas aminofluorene does so only weakly. Induction of the SOS response causes an increase in TLS events through the AAF adduct (approximately 13%). The increase in TLS is accompanied by a proportional increase in the frequency of AAF-induced frameshift mutations. However, the polymerase frameshift error rate per TLS event was essentially constant throughout the SOS response. In an SOS-induced delta umuD/C strain, both US events and mutagenesis are totally abolished even though there is no decrease in plasmid survival. Error-free replication evidently proceeds efficiently by means of the damage avoidance pathway. We conclude that SOS mutagenesis results from increased TLS rather than from an increased frameshift error rate of the polymerase.