176 resultados para Interleukin-2 Gene
Resumo:
CD28 is a costimulatory receptor found on the surface of most T lymphocytes. Engagement of CD28 induces interleukin 2 (IL-2) production and cell proliferation when combined with an additional signal such as treatment with phorbol ester, an activator of protein kinase C. Recent studies have established that after CD28 ligation, the cytoplasmic domain of CD28 can bind to the 85-kDa subunit of phosphatidylinositol 3-kinase (PI3 kinase). There is a concomitant increase in PI3 lipid kinase activity that may be important in CD28 signaling. Despite the requirement of phorbol 12-myristate 13-acetate (PMA) for effector function, we have found, however, that treatment of Jurkat T cells with the phorbol ester PMA dramatically inhibits (i) the association of PI3 kinase with CD28, (ii) the ability of p85 PI3 kinase to be immunoprecipitated by anti-phosphotyrosine antibodies, and (iii) the induction of PI3 kinase activity after stimulation of the cells with the anti-CD28 monoclonal antibody 9.3. These changes occur within minutes of PMA treatment and are persistent. In addition, we have found that wortmannin, a potent inhibitor of PI3 kinase, does not interfere with the induction of IL-2 after stimulation of Jurkat T cells with anti-CD28 monoclonal antibody and PMA. We conclude that PI3 kinase activity may not be required for CD28-dependent IL-2 production from Jurkat T cells in the presence of PMA.
Resumo:
The p53 tumor-suppressor protein binds DNA and activates the expression of a 21-kDa protein that inhibits both the activity of cyclin-dependent kinases and the function of proliferating cell nuclear antigen. Since p21 expression has been reported to increase 10- to 20-fold as human diploid fibroblasts lose the ability to replicate, we examined the expression and activity of p53 during replicative aging. Similar levels of total p53 mRNA and protein were expressed in low-passage (young) and high-passage (old) cells but both DNA binding activity in vitro and transcriptional activity of p53 in vivo were increased severalfold in high-passage cells. While the basis of increased p53 activity is presently unclear, it is not correlated with differential phosphorylation or changes in p53-mouse double minute 2 gene product interactions. These results provide evidence for the activation of a protein involved in the control of cell cycle checkpoints during cellular aging, in the absence of increased expression.
Resumo:
Analogs of the immunosuppressive cyclic undecapeptide cyclosporin A (CsA) with substitutions in positions 1, 4, 6, and/or 11 were rationally designed to possess substantially diminished or no immunosuppressive activity. When these compounds were assayed for their capacity to interfere with the replication of human immunodeficiency virus, some displayed a potent antiviral activity in newly infected cells. However, only CsA could interfere with virus replication in persistently infected cells. One CsA analog with antiviral activity costimulated the phytohemagglutinin-induced production of interleukin 2 by human lymphocytes. Human immunodeficiency virus particles from drug-exposed cells showed lower infectivity than virions from untreated cells. Thus, these nonimmunosuppressive analogs of CsA constitute a promising class of lead compounds to develop drugs for effective treatment of the acquired immunodeficiency syndrome.
Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division.
Resumo:
Growth factors have been defined by their ability to promote the proliferative expansion of receptor-bearing cells. For example, antigen-activated T cells expressing the alpha beta gamma form of the interleukin 2 (IL-2) receptor will proliferate in response to IL-2. In contrast, resting T cells, which express the IL-2 receptor beta and gamma chains, do not proliferate in response to IL-2. We demonstrate that the survival of resting T cells following gamma irradiation is greatly enhanced by pretreatment with IL-2. The radioprotective effect of IL-2 is dose dependent, does not result from the induction of cell proliferation, and does not require expression of the IL-2 receptor alpha chain. Thus, the beta gamma IL-2 receptor expressed on resting T cells can transduce signals that promote cell survival without committing the T cell to undergo cell division. IL-4 and IL-7, but not IL-1, IL-3, or IL-6, were also found to enhance the survival of quiescent T cells following gamma irradiation. Thus, certain growth factor-receptor interactions can serve to maintain cell viability in a manner that is independent of their ability to initiate or maintain cell proliferation. These data may have important implications for the use of growth factors in patients being treated with radiation and/or chemotherapy.
Resumo:
Induction of immunity against antigens expressed on tumor cells might prevent or delay recurrence of the disease. Six patients operated on for colorectal carcinoma were immunized with human monoclonal anti-idiotypic antibodies (h-Ab2) against the mouse 17-1A anti-colon carcinoma antibody, mimicking a nominal antigen (GA733-2). All patients developed a long-lasting T-cell immunity against the extracellular domain of GA733-2 (GA733-2E) (produced in a baculovirus system) and h-Ab2. This was shown in vitro by specific cell proliferation (DNA-synthesis) assay as well as by interleukin 2 and interferon gamma production and in vivo by the delayed-type hypersensitivity reaction. Five patients mounted a specific humoral response (IgG) against the tumor antigen GA733-2E (ELISA) and tumor cells expressing GA733-2. Epitope mapping using 23 overlapping peptides of GA733-2E revealed that the B-cell epitope was localized close to the N terminus of GA733-2. Binding of the antibodies to the tumor antigen and to one 18-aa peptide was inhibited by h-Ab2, indicating that the antibodies were able to bind to the antigen as well as to h-Ab2. The results suggest that our h-Ab2 might be able to induce an anti-tumor immunity which may control the growth of tumor cells in vivo.
Resumo:
The mechanisms by which cells rapidly polarize in the direction of external signals are not understood. Helper T cells, when contacted by an antigen-presenting cell, polarize their cytoskeletons toward the antigen-presenting cell within minutes. Here we show that, in T cells, the mammalian Ras-related GTPase CDC42 (the homologue of yeast CDC42, a protein involved in budding polarity) can regulate the polarization of both actin and microtubules toward antigen-presenting cells but is not involved in other T-cell signaling processes such as those which culminate in interleukin 2 production. Although T-cell polarization appears dispensable for signaling leading to interleukin 2 production, polarization may direct lymphokine secretion towards the correct antigen-presenting cell in a crowded cellular environment. Inhibitor experiments suggest that phosphatidylinositol 3-kinase is required for cytoskeletal polarization but that calcineurin activity, known to be important for other aspects of signaling, is not. Apparent conservation of CDC42 function between yeast and T cells suggests that this GTPase is a general regulator of cytoskeletal polarity in many cell types.
Resumo:
Cytochrome P450 1A2 (CYP1A2) is a constitutively expressed hepatic enzyme that is highly conserved among mammals. This protein is primarily involved in oxidative metabolism of xenobiotics and is capable of metabolically activating numerous procarcinogens including aflatoxin B1, arylamines, heterocyclic amine food mutagens, and polycylic aromatic hydrocarbons. Expression of CYP1A2 is induced after exposure to certain aromatic hydrocarbons (i.e., 2,3,7,8-tetrachlorodibenzo-p-dioxin). Direct evidence for a role of CYP1A2 in any physiological or developmental pathway has not been documented. We now demonstrate that mice homozygous for a targeted mutation in the Cyp1a-2 gene are nonviable. Lethality occurs shortly after birth with symptoms of severe respiratory distress. Mutant neonates display impaired respiratory function associated with histological signs of lung immaturity, lack of air in alveoli at birth, and changes in expression of surfactant apoprotein in alveolar type II cells. The penetrance of the phenotype is not complete (19 mutants survived to adulthood out of 599 mice). Surviving animals, although lacking expression of CYP1A2, appear to be normal and are able to reproduce. These findings establish that CYP1A2 is critical for neonatal survival by influencing the physiology of respiration in neonates, thus offering etiological insights for neonatal respiratory distress syndrome.
Resumo:
Neuroblastoma (NB), a tumor arising from the sympathetic nervous system, is one of the most common malignancies in childhood. Several recent reports on the p53 genotype found virtually exclusive wild-type status in primary tumors, and it was postulated that p53 plays no role in the development of NB. Here, however, we report that the vast majority of undifferentiated NBs exhibit abnormal cytoplasmic sequestration of wild-type p53. This inability of p53 to translocate to the nucleus presumably prevents the protein from functioning as a suppressor. Thirty of 31 cases (96%) of undifferentiated NB showed elevated levels of wild-type p53 in the cytoplasm of all tumor cells concomittant with a lack of nuclear staining. p53 immunoprecipitation from tumor tissues showed a 4.5- to 8-fold increase over normal protein levels. All of 10 tumors analyzed harbored wild-type p53 by direct sequencing of full-length cDNA and Southern blot. In addition, no MDM-2 gene amplification was seen in all 11 tumors analyzed. In contrast, no p53 abnormality was detected in 14 differentiated ganglioneuroblastomas and 1 benign ganglioneuroma. We conclude that loss of p53 function seems to play a major role in the tumorigenesis of undifferentiated NB. This tumor might abrogate the transactivating function of p53 by inhibiting its access to the nucleus, rather than by gene mutation. Importantly, our results suggest that (i) this could be a general mechanism for p53 inactivation not limited to breast cancer (where we first described it) and that (ii) it is found in a tumor previously not thought to be affected by p53 alteration.
Resumo:
Human T-cell leukemia virus type I (HTLV-I) gives rise to a neurologic disease known as HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the pathogenesis of the disease is unknown, the presence of a remarkably high frequency of Tax-specific, cytotoxic CD8 T cells may suggest a role of these cells in the development of HAM/TSP. Antigen-mediated signaling in a CD8 T-cell clone specific for the Tax(11-19) peptide of HTLV-I was studied using analog peptides substituted in their T-cell receptor contact residues defined by x-ray crystallographic data of the Tax(11-19) peptide in the groove of HLA-A2. CD8 T-cell stimulation with the wild-type peptide antigen led to activation of p56lck kinase activity, interleukin 2 secretion, cytotoxicity, and clonal expansion. A Tax analog peptide with an alanine substitution of the T-cell receptor contact residue tyrosine-15 induced T-cell-mediated cytolysis without activation of interleukin 2 secretion or proliferation. Induction of p56lck kinase activity correlated with T-cell-mediated cytotoxicity, whereas interleukin 2 secretion correlated with [3H]thymidine incorporation and proliferation. Moreover, Tax peptide analogs that activated the tyrosine kinase activity of p56lck could induce unresponsiveness to secondary stimulation with the wild-type peptide. These observations show that a single amino acid substitution in a T-cell receptor contact residue of Tax can differentially signal CD8 T cells and further demonstrate that primary activation has functional consequences for the secondary response of at least some Tax-specific CD8 T cells to HTLV-I-infected target cells.
Resumo:
Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor α (TNFα) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFα receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides.
Resumo:
It is widely accepted that interleukin-1β (IL-1β), a cytokine produced not only by immune cells but also by glial cells and certain neurons influences brain functions during infectious and inflammatory processes. It is still unclear, however, whether IL-1 production is triggered under nonpathological conditions during activation of a discrete neuronal population and whether this production has functional implications. Here, we show in vivo and in vitro that IL-1β gene expression is substantially increased during long-term potentiation of synaptic transmission, a process considered to underlie certain forms of learning and memory. The increase in gene expression was long lasting, specific to potentiation, and could be prevented by blockade of potentiation with the N-methyl-d-aspartate (NMDA) receptor antagonist, (±)-2-amino-5-phosphonopentanoic acid (AP-5). Furthermore, blockade of IL-1 receptors by the specific interleukin-1 receptor antagonist (IL-1ra) resulted in a reversible impairment of long-term potentiation maintenance without affecting its induction. These results show for the first time that the production of biologically significant amounts of IL-1β in the brain can be induced by a sustained increase in the activity of a discrete population of neurons and suggest a physiological involvement of this cytokine in synaptic plasticity.
Resumo:
Heme-binding protein 23 kDa (HBP23), a rat isoform of human proliferation-associated gene product (PAG), is a member of the peroxiredoxin family of peroxidases, having two conserved cysteine residues. Recent biochemical studies have shown that HBP23/PAG is an oxidative stress-induced and proliferation-coupled multifunctional protein that exhibits specific bindings to c-Abl protein tyrosine kinase and heme, as well as a peroxidase activity. A 2.6-Å resolution crystal structure of rat HBP23 in oxidized form revealed an unusual dimer structure in which the active residue Cys-52 forms a disulfide bond with conserved Cys-173 from another subunit by C-terminal tail swapping. The active site is largely hydrophobic with partially exposed Cys-173, suggesting a reduction mechanism of oxidized HBP23 by thioredoxin. Thus, the unusual cysteine disulfide bond is involved in peroxidation catalysis by using thioredoxin as the source of reducing equivalents. The structure also provides a clue to possible interaction surfaces for c-Abl and heme. Several significant structural differences have been found from a 1-Cys peroxiredoxin, ORF6, which lacks the C-terminal conserved cysteine corresponding to Cys-173 of HBP23.
Resumo:
IL-4 receptor α chain (IL-4Rα)-deficient mice were generated by gene-targeting in BALB/c embryonic stem cells. Mutant mice showed a loss of IL-4 signal transduction and functional activity. The lack of IL-4Rα resulted in markedly diminished, but not absent, TH2 responses after infection with the helminthic parasite Nippostrongylus brasiliensis. CD4+, CD62L-high, and CD62L-low T cell populations from uninfected IL-4Rα−/− mice were isolated by cell sorting. Upon primary stimulation by T cell receptor cross-linkage, the CD62L-low, but not the CD62L-high, cells secreted considerable amounts of IL-4, which was strikingly enhanced upon 4-day culture with anti-CD3 in the presence or absence of IL-4. CD62L-low cells isolated from IL-4Rα−/−, β2-microglobulin−/− double homozygous mice produced less IL-4 than did either IL-4Rα−/− or wild-type mice. These results indicate that an IL-4-independent, β2-microglobulin-dependent pathway exists through which the CD62L-low CD4+ population has acquired IL-4-producing capacity in vivo, strongly suggesting that these cells are NK T cells.
Resumo:
Stimulation of antitumor immune mechanisms is the primary goal of cancer immunotherapy, and accumulating evidence suggests that effective alteration of the host–tumor relationship involves immunomodulating cytokines and also the presence of costimulatory molecules. To examine the antitumor effect of direct in vivo gene transfer of murine interleukin 12 (IL-12) and B7-1 into tumors, we developed an adenovirus (Ad) vector, AdIL12–B7-1, that encodes the two IL-12 subunits in early region 1 (E1) and the B7-1 gene in E3 under control of the murine cytomegalovirus promoter. This vector expressed high levels of IL-12 and B7-1 in infected murine and human cell lines and in primary murine tumor cells. In mice bearing tumors derived from a transgenic mouse mammary adenocarcinoma, a single intratumoral injection with a low dose (2.5 × 107 pfu/mouse) of AdIL12–B7-1 mediated complete regression in 70% of treated animals. By contrast, administration of a similar dose of recombinant virus encoding IL-12 or B7-1 alone resulted in only a delay in tumor growth. Interestingly, coinjection of two different viruses expressing either IL-12 or B7-1 induced complete tumor regression in only 30% of animals treated at this dose. Significantly, cured animals remained tumor free after rechallenge with fresh tumor cells, suggesting that protective immunity had been induced by treatment with AdIL12–B7-1. These results support the use of Ad vectors as a highly efficient delivery system for synergistically acting molecules and show that the combination of IL-12 and B7-1 within a single Ad vector might be a promising approach for in vivo cancer therapy.
Resumo:
The Epstein–Barr virus-induced gene 3 (EBI3) is a novel soluble hematopoietin component related to the p40 subunit of interleukin 12 (IL-12). When EBI3 was expressed in cells, it accumulated in the endoplasmic reticulum and associated with the molecular chaperone calnexin, indicating that subsequent processing and secretion might be dependent on association with a second subunit. Coimmunoprecipitations from lysates and culture media of cells transfected with expression vectors for EBI3 and/or the p35 subunit of IL-12 now reveal a specific association of EBI3 with p35. Coexpression of EBI3 and p35 mutually facilitates their secretion. Most importantly, a large fraction of p35 in extracts of the trophoblast component of a human full-term normal placenta specifically coimmunoprecipitated with EBI3, indicating that EBI3 is in a heterodimer with p35, in vivo. Because EBI3 is expressed in EBV-transformed B lymphocytes, tonsil, spleen, and placental trophoblasts, the EBI3/p35 heterodimer is likely to be an important immunomodulator.