107 resultados para Epstein-Barr virus induced gene 3"
Resumo:
Phosphorylation of the P proteins of nonsegmented negative-strand RNA viruses is critical for their function as transactivators of the viral RNA polymerases. Using unphosphorylated P protein of human parainfluenza virus type 3 (HPIV3) expressed in Escherichia coli, we have shown that the cellular protein kinase that phosphorylates P in vitro is biochemically and immunologically indistinguishable from cellular protein kinase C isoform zeta (PKC-zeta). Further, PKC-zeta is specifically packaged within the progeny HPIV3 virions and remains tightly associated with the ribonucleoprotein complex. The P protein seems also to be phosphorylated intracellularly by PKC-zeta, as shown by the similar protease digestion pattern of the in vitro and in vivo phosphorylated P proteins. The growth of HPIV3 in CV-1 cells is completely abrogated when a PKC-zeta-specific inhibitor pseudosubstrate peptide was delivered into cells. These data indicate that PKC-zeta plays an important role in HPIV3 gene expression by phosphorylating P protein, thus providing an opportunity to develop antiviral agents against an important human pathogen.
Resumo:
The plant growth hormone indole-3-acetic acid (IAA) transcriptionally activates expression of several genes in plants. We have previously identified a 164-bp promoter region (-318 to -154) in the PS-IAA4/5 gene that confers IAA inducibility. Linker-scanning mutagenesis across the region has identified two positive domains: domain A (48 bp; -203 to -156) and domain B (44 bp; -299 to -256), responsible for transcriptional activation of PS-IAA4/5 by IAA. Domain A contains the highly conserved sequence 5'-TGTCCCAT-3' found among various IAA-inducible genes and behaves as the major auxin-responsive element. Domain B functions as an enhancer element which may also contain a less efficient auxin-responsive element. The two domains act cooperatively to stimulate transcription; however, tetramerization of domain A or B compensates for the loss of A or B function. The two domains can also mediate IAA-induced transcription from the heterologous cauliflower mosaic virus 35S promoter (-73 to +1). In vivo competition experiments with icosamers of domain A or B show that the domains interact specifically and with different affinities to low abundance, positive transcription factor(s). A model for transcriptional activation of PS-IAA4/5 by IAA is discussed.