162 resultados para Chemosensitive signaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in intracellular calcium in pea root hairs responding to Rhizobium leguminosarum bv. viciae nodulation (Nod) factors were analyzed by using a microinjected calcium-sensitive fluorescent dye (dextran-linked Oregon Green). Within 1–2 min after Nod-factor addition, there was usually an increase in fluorescence, followed about 10 min later by spikes in fluorescence occurring at a rate of about one spike per minute. These spikes, corresponding to an increase in calcium of ≈200 nM, were localized around the nuclear region, and they were similar in terms of lag and period to those induced by Nod factors in alfalfa. Calcium responses were analyzed in nonnodulating pea mutants, representing seven loci that affect early stages of the symbiosis. Mutations affecting three loci (sym8, sym10, and sym19) abolished Nod-factor-induced calcium spiking, whereas a normal response was seen in peas carrying alleles of sym2A, sym7, sym9, and sym30. Chitin oligomers of four or five N-acetylglucosamine residues could also induce calcium spiking, although the response was qualitatively different from that induced by Nod factors; a rapid increase in intracellular calcium was not observed, the period between spikes was lower, and the response was not as sustained. The chitin-oligomer-induced calcium spiking did not occur in nodulation mutants (sym8, sym10, and sym19) that were defective for Nod-factor-induced spiking, suggesting that this response is related to nodulation signaling. From our data and previous observations on the lack of mycorrhizal infection in some of the sym mutants, we propose a model for the potential order of pea nodulation genes in nodulation and mycorrhizal signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterotrimeric G proteins mediate the earliest step in cell responses to external events by linking cell surface receptors to intracellular signaling pathways. Gz is a member of the Gi family of G proteins that is prominently expressed in platelets and brain. Here, we show that deletion of the α subunit of Gz in mice: (i) impairs platelet aggregation by preventing the inhibition of cAMP formation normally seen at physiologic concentrations of epinephrine, and (ii) causes the mice to be more resistant to fatal thromboembolism. Loss of Gzα also results in greatly exaggerated responses to cocaine, reduces the analgesic effects of morphine, and abolishes the effects of widely used antidepressant drugs that act as catecholamine reuptake inhibitors. These changes occur despite the presence of other Giα family members in the same cells and are not accompanied by detectable compensatory changes in the level of expression of other G protein subunits. Therefore, these results provide insights into receptor selectivity among G proteins and a model for understanding platelet function and the effects of psychoactive drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teeth have been missing from birds (Aves) for at least 60 million years. However, in the chick oral cavity a rudiment forms that resembles the lamina stage of the mammalian molar tooth germ. We have addressed the molecular basis for this secondary loss of tooth formation in Aves by analyzing in chick embryos the status of molecular pathways known to regulate mouse tooth development. Similar to the mouse dental lamina, expression of Fgf8, Pitx2, Barx1, and Pax9 defines a potential chick odontogenic region. However, the expression of three molecules involved in tooth initiation, Bmp4, Msx1, and Msx2, are absent from the presumptive chick dental lamina. In chick mandibles, exogenous bone morphogenetic protein (BMP) induces Msx expression and together with fibroblast growth factor promotes the development of Sonic hedgehog expressing epithelial structures. Distinct epithelial appendages also were induced when chick mandibular epithelium was recombined with a tissue source of BMPs and fibroblast growth factors, chick skin mesenchyme. These results show that, although latent, the early signaling pathways involved in odontogenesis remain inducible in Aves and suggest that loss of odontogenic Bmp4 expression may be responsible for the early arrest of tooth development in living birds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poxviruses employ many strategies to evade and neutralize the host immune response. In this study, we have identified two vaccinia virus ORFs, termed A46R and A52R, that share amino acid sequence similarity with the Toll/IL-1 receptor (TIR) domain, a motif that defines the IL-1/Toll-like receptor (TLR) superfamily of receptors, which have a key role in innate immunity and inflammation. When expressed in mammalian cells, the protein products of both ORFs were shown to interfere specifically with IL-1 signal transduction. A46R partially inhibited IL-1-mediated activation of the transcription factor NFκB, and A52R potently blocked both IL-1- and TLR4-mediated NFκB activation. MyD88 is a TIR domain-containing adapter molecule known to have a central role in both IL-1 and TLR4 signaling. A52R mimicked the dominant-negative effect of a truncated version of MyD88 on IL-1, TLR4, and IL-18 signaling but had no effect on MyD88-independent signaling pathways. Therefore, A46R and A52R are likely to represent a mechanism used by vaccinia virus of suppressing TIR domain-dependent intracellular signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of the tumor suppressor p53 by stress and damage stimuli often correlates with induction of stress kinases, Jun-NH2 kinase (JNK). As JNK association with p53 plays an important role in p53 stability, in the present study we have elucidated the relationship between the JNK-signaling pathway and p53 stability and activity. Expression of a constitutively active form of JNKK upstream kinase, mitogen-activated protein kinase kinase kinase (ΔMEKK1), increased the level of the exogenously transfected form of p53 in p53 null (10.1) cells as well as of endogenous p53 in MCF7 breast cancer cells. Increased p53 level by forced expression of ΔMEKK1 coincided with a decrease in p53 ubiquitination in vivo and with prolonged p53 half-life. Computerized modeling of the JNK-binding site (amino acids 97–116; p7 region) enabled us to design mutations of exposed residues within this region. Respective mutations (p53101-5-8) and deletion (p53Δp7) forms of p53 did not exhibit the same increase in p53 levels upon ΔMEKK1 expression. In vitro phosphorylation of p53 by JNK abolished Mdm2 binding and targeting of p53 ubiquitination. Similarly, ΔMEKK1 expression increased p53 phosphorylation by immunopurified JNK and dissociated p53–Mdm2 complexes. Transcriptional activity of p53, as measured via mdm2 promoter-driven luciferase, exhibited a substantial increase in ΔMEKK1-expressing cells. Cotransfection of p53 and ΔMEKK1 into p53 null cells potentiated p53-dependent apoptosis, suggesting that MEKK1 effectors contribute to the ability of p53 to mediate programmed cell death. Our results point to the role of MEKK1-JNK signaling in p53 stability, transcriptional activities, and apoptotic capacity as part of the cellular response to stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of cell growth and transformation can be achieved in transformed glial cells by disabling erbB receptor signaling. However, recent evidence indicates that the induction of apoptosis may underlie successful therapy of human cancers. In these studies, we examined whether disabling oncoproteins of the erbB receptor family would sensitize transformed human glial cells to the induction of genomic damage by γ-irradiation. Radioresistant human glioblastoma cells in which erbB receptor signaling was inhibited exhibited increased growth arrest and apoptosis in response to DNA damage. Apoptosis was observed after radiation in human glioma cells containing either a wild-type or mutated p53 gene product and suggested that both p53-dependent and -independent mechanisms may be responsible for the more radiosensitive phenotype. Because cells exhibiting increased radiation-induced apoptosis were also capable of growth arrest in serum-deprived conditions and in response to DNA damage, apoptotic cell death was not induced simply as a result of impaired growth arrest pathways. Notably, inhibition of erbB signaling was a more potent stimulus for the induction of apoptosis than prolonged serum deprivation. Proximal receptor interactions between erbB receptor members thus influence cell cycle checkpoint pathways activated in response to DNA damage. Disabling erbB receptors may improve the response to γ-irradiation and other cytotoxic therapies, and this approach suggests that present anticancer strategies could be optimized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a method to analyze the relative contributions of pre- and postsynaptic actions of a particular gene product in neurons in culture and potentially in slices using adenovirus-mediated gene transfer. A recombinant virus directed the expression of both a GFP reporter protein and TrkB.T1, a C-terminal truncated dominant negative TrkB neurotrophin receptor. When expressed in the presynaptic cell at synapses between embryonic hippocampal neurons in culture, the dominant negative TrkB.T1 inhibited two forms of synaptic potentiation induced by the neurotrophin brain-derived neurotrophic factor (BDNF): (i) greater evoked synaptic transmission and (ii) higher frequency of spontaneous miniature synaptic currents. These inhibition effects are not seen if the transgene is expressed only in the postsynaptic cell. We conclude that BDNF-TrkB signal transduction in the presynaptic terminal leads to both types of potentiation and is therefore the primary cause of synaptic enhancement by BDNF in these neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although activation of one seven-transmembrane receptor can influence the response of a separate seven-transmembrane receptor, e.g., the phenomenon of synergism, the underlying mechanism(s) for this signaling process is unclear. The present study investigated communication between two receptors that exhibit classical synergism, e.g., human platelet thrombin and thromboxane A2 receptors. Activation of thrombin receptors caused an increase in ligand affinity of thromboxane A2 receptors. This effect (i) was shown to be specific, since a similar increase in ligand affinity was not caused by ADP or A23187; (ii) did not require cytosolic components, e.g., kinases, proteases, phosphatases, etc., because it occurred in isolated platelet membranes; (iii) was G protein-mediated because it was blocked by an Gαq C terminus antibody; and (iv) was associated with a net increase in Gαq coupling to thromboxane A2 receptors. Collectively, these data provide evidence that seven-transmembrane receptors that share a common Gα subunit can communicate with each other via a redistribution of their G proteins. Thus, activation of thrombin receptors increases Gαq association with thromboxane A2 receptors thereby shifting them to a higher affinity state. This signaling phenomenon, which modulates receptor-ligand affinity, may serve as a molecular mechanism for cellular adaptive processes such as synergism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

c-Jun N-terminal kinases (JNKs) are potently activated by a number of cellular stimuli. Small GTPases, in particular Rac, are responsible for initiating the activation of the JNK pathways. So far, the signals leading from extracellular stimuli to the activation of Rac have remained elusive. Recent studies have demonstrated that the Src homology 2 (SH2)- and Src homology 3 (SH3)-containing adaptor protein Crk is capable of activating JNK when ectopically expressed. We found here that transient expression of Crk induces JNK activation, and this activation was dependent on both the SH2- and SH3-domains of Crk. Expression of p130Cas (Cas), a major binding protein for the Crk SH2-domain, also induced JNK activation, which was blocked by the SH2-mutant of Crk. JNK activation by Cas and Crk was effectively blocked by a dominant-negative form of Rac, suggesting for a linear pathway from the Cas-Crk-complex to the Rac-JNK activation. Many of the stimuli that activate the Rac-JNK pathway enhance engagement of the Crk SH2-domain. JNK activation by these stimuli, such as epidermal growth factor, integrin ligand binding and v-Src, was efficiently blocked by dominant-negative mutants of Crk. A dominant-negative form of Cas in turn blocked the integrin-, but not epidermal growth factor - nor v-Src-mediated JNK activation. Together, these results demonstrate an important role for Crk in connecting multiple cellular stimuli to the Rac-JNK pathway, and a role for the Cas-Crk complex in integrin-mediated JNK activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forced expression of gap junction proteins, connexins, enables gap junction-deficient cell lines to propagate intercellular calcium waves. Here, we show that ATP secretion from the poorly coupled cell lines, C6 glioma, HeLa, and U373 glioblastoma, is potentiated 5- to 15-fold by connexin expression. ATP release required purinergic receptor-activated intracellular Ca2+ mobilization and was inhibited by Cl− channel blockers. Calcium wave propagation also was reduced by purinergic receptor antagonists and by Cl− channel blockers but insensitive to gap junction inhibitors. These observations suggest that cell-to-cell signaling associated with connexin expression results from enhanced ATP release and not, as previously believed, from an increase in intercellular coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexes between the quorum-sensing regulator TraR and its inducing ligand autoinducer (AAI) are soluble in Escherichia coli, whereas apo-TraR is almost completely insoluble. Here we show that the lack of soluble TraR is due in large part to rapid proteolysis, inasmuch as apo-TraR accumulated to high levels in an E. coli strain deficient in Clp and Lon proteases. In pulse labeling experiments, AAI protected TraR against proteolysis only when it was added before the radiolabel. This observation indicates that TraR proteins can productively bind AAI only during their own synthesis on polysomes, whereas fully synthesized apo-TraR proteins are not functional AAI receptors. Purified apo-TraR was rapidly degraded by trypsin to oligopeptides, whereas TraR–AAI complexes were more resistant to trypsin and were cleaved at discrete interdomain linkers, indicating that TraR requires AAI to attain its mature tertiary structure. TraR–AAI complexes eluted from a gel filtration column as dimers and bound DNA as dimers. In contrast, apo-TraR was monomeric, and incubation with AAI under a variety of conditions did not cause dimerization. We conclude that AAI is critical for the folding of nascent TraR protein into its mature tertiary structure and that full-length apo-TraR cannot productively bind AAI and is consequently targeted for rapid proteolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two widely coexpressed isoforms of β-arrestin (termed βarrestin 1 and 2) are highly similar in amino acid sequence. The β-arrestins bind phosphorylated heptahelical receptors to desensitize and target them to clathrin-coated pits for endocytosis. To better define differences in the roles of β-arrestin 1 and 2, we prepared mouse embryonic fibroblasts from knockout mice that lack one of the β-arrestins (βarr1-KO and βarr2-KO) or both (βarr1/2-KO), as well as their wild-type (WT) littermate controls. These cells were analyzed for their ability to support desensitization and sequestration of the β2-adrenergic receptor (β2-AR) and the angiotensin II type 1A receptor (AT1A-R). Both βarr1-KO and βarr2-KO cells showed similar impairment in agonist-stimulated β2-AR and AT1A-R desensitization, when compared with their WT control cells, and the βarr1/2-KO cells were even further impaired. Sequestration of the β2-AR in the βarr2-KO cells was compromised significantly (87% reduction), whereas in the βarr1-KO cells it was not. Agonist-stimulated internalization of the AT1A-R was only slightly reduced in the βarr1-KO but was unaffected in the βarr2-KO cells. In the βarr1/2-KO cells, the sequestration of both receptors was dramatically reduced. Comparison of the ability of the two β-arrestins to sequester the β2-AR revealed β-arrestin 2 to be 100-fold more potent than β-arrestin 1. Down-regulation of the β2-AR was also prevented in the βarr1/2-KO cells, whereas no change was observed in the single knockout cells. These findings suggest that sequestration of various heptahelical receptors is regulated differently by the two β-arrestins, whereas both isoforms are capable of supporting receptor desensitization and down-regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to determine whether β1-adrenergic receptor (AR) and β2-AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac β2-AR can activate both Gs and Gi proteins, whereas cardiac β1-AR couples only to Gs. To avoid complicated crosstalk between β-AR subtypes, we expressed β1-AR or β2-AR individually in adult β1/β2-AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of β1-AR, but not β2-AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, β2-AR (but not β1-AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting Gi, Gβγ, or phosphoinositide 3 kinase (PI3K) with pertussis toxin, βARK-ct (a peptide inhibitor of Gβγ), or LY294002, respectively. This indicates that β2-AR activates Akt via a Gi-Gβγ-PI3K pathway. More importantly, inhibition of the Gi-Gβγ-PI3K-Akt pathway converts β2-AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, β2-ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the Gi-Gβγ-PI3K-Akt signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In shark heart, the Na+–Ca2+ exchanger serves as a major pathway for both Ca2+ influx and efflux, as there is only rudimentary sarcoplasmic reticulum in these hearts. The modulation of the exchanger by a β-adrenergic agonist in whole-cell clamped ventricular myocytes was compared with that of the Na+–Ca2+ exchanger blocker KB-R7943. Application of 5 μM isoproterenol and 10 μM KB-R7943 suppressed both the inward and the outward Na+–Ca2+ exchanger current (INa−Ca). The isoproterenol effect was mimicked by 10 μM forskolin. Isoproterenol and forskolin shifted the reversal potential (Erev) of INa−Ca by approximately −23 mV and −30 mV, respectively. An equivalent suppression of outward INa−Ca by KB-R7943 to that by isoproterenol produced a significantly smaller shift in Erev of about −4 mV. The ratio of inward to outward exchanger currents was also significantly larger in isoproterenol- than in control- and KB-R7943-treated myocytes. Our data suggest that the larger ratio of inward to outward exchanger currents as well as the larger shift in Erev with isoproterenol results from the enhanced efficacy of Ca2+ efflux via the exchanger. The protein kinase A-mediated bimodal regulation of the exchanger in parallel with phosphorylation of the Ca2+ channel and enhancement of its current may have evolved to satisfy the evolutionary needs for accelerated contraction and relaxation in hearts of animals with vestigial sarcoplasmic Ca2+ release stores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor α (PPARα) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARα colocalize in the nucleus of mouse primary hepatocytes. Furthermore, we demonstrate by pull-down assay and immunocoprecipitation that L-FABP interacts directly with PPARα. In a cell biological approach with the aid of a mammalian two-hybrid system, we provide evidence that L-FABP interacts with PPARα and PPARγ but not with PPARβ and retinoid X receptor-α by protein–protein contacts. In addition, we demonstrate that the observed interaction of both proteins is independent of ligand binding. Final and quantitative proof for L-FABP mediation was obtained in transactivation assays upon incubation of transiently and stably transfected HepG2 cells with saturated, monounsaturated, and polyunsaturated fatty acids as well as with hypolipidemic drugs. With all ligands applied, we observed strict correlation of PPARα and PPARγ transactivation with intracellular concentrations of L-FABP. This correlation constitutes a nucleus-directed signaling by fatty acids and hypolipidemic drugs where L-FABP acts as a cytosolic gateway for these PPARα and PPARγ agonists. Thus, L-FABP and the respective PPARs could serve as targets for nutrients and drugs to affect expression of PPAR-sensitive genes.