284 resultados para Catalytic Subunit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incubation of Na/K-ATPase with ascorbate plus H2O2 produces specific cleavage of the α subunit. Five fragments with intact C termini and complementary fragments with intact N termini were observed. The β subunit is not cleaved. Cleavages depend on the presence of contaminant or added Fe2+ ions, as inferred by suppression of cleavages with nonspecific metal complexants (histidine, EDTA, phenanthroline) or the Fe3+-specific complexant desferrioxamine, or acceleration of cleavages by addition of low concentrations of Fe2+ but not of other heavy metal ions. Na/K-ATPase is inactivated in addition to cleavage, and both effects are insensitive to OH⋅ radical scavengers. Cleavages are sensitive to conformation. In low ionic strength media (E2) or media containing Rb ions [E2(Rb)], cleavage is much faster than in high ionic strength media (E1) or media containing Na ions (E1Na). N-terminal fragments and two C-terminal fragments (N-terminals E214 and V712) have been identified by amino acid sequencing. Approximate positions of other cleavages were determined with specific antibodies. The results suggest that Fe2+ (or Fe3+) ions bind with high affinity at the cytoplasmic surface and catalyze cleavages of peptide bonds close to the Fe2+ (or Fe3+) ion. Thus, cleavage patterns can provide information on spatial organization of the polypeptide chain. We propose that highly conserved regions of the α subunit, within the minor and major cytoplasmic loops, interact in the E2 or E2(Rb) conformations but move apart in the E1 or E1Na conformations. We discuss implications of domain interactions for the energy transduction mechanism. Fe-catalyzed cleavages may be applicable to other P-type pumps or membrane proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent determination of the myosin head atomic structure has led to a new model of muscle contraction, according to which mechanical torque is generated in the catalytic domain and amplified by the lever arm made of the regulatory domain [Fisher, A. J., Smith, C. A., Thoden, J., Smith, R., Sutoh, K., Holden, H. M. & Rayment, I. (1995) Biochemistry 34, 8960–8972]. A crucial aspect of this model is the ability of the regulatory domain to move independently of the catalytic domain. Saturation transfer–EPR measurements of mobility of these two domains in myosin filaments give strong support for this notion. The catalytic domain of the myosin head was labeled at Cys-707 with indane dione spin label; the regulatory domain was labeled at the single cysteine residue of the essential light chain and exchanged into myosin. The mobility of the regulatory domain in myosin filaments was characterized by an effective rotational correlation time (τR) between 24 and 48 μs. In contrast, the mobility of the catalytic domain was found to be τR = 5–9 μs. This difference in mobility between the two domains existed only in the filament form of myosin. In the monomeric form, or when bound to actin, the mobility of the two domains in myosin was indistinguishable, with τR = 1–4 μs and >1,000 μs, respectively. Therefore, the observed difference in filaments cannot be ascribed to differences in local conformations of the spin-labeled sites. The most straightforward interpretation suggests a flexible hinge between the two domains, which would have to stiffen before force could be generated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic antibodies have shown great promise for catalyzing a tremendously diverse set of natural and unnatural chemical transformations. However, few catalytic antibodies have efficiencies that approach those of natural enzymes. In principle, random mutagenesis procedures such as phage display could be used to improve the catalytic activities of existing antibodies; however, these studies have been hampered by difficulties in the recombinant expression of antibodies. Here, we have grafted the antigen binding loops from a murine-derived catalytic antibody, 17E8, onto a human antibody framework in an effort to overcome difficulties associated with recombinant expression and phage display of this antibody. “Humanized” 17E8 retained similar catalytic and hapten binding properties as the murine antibody while levels of functional Fab displayed on phage were 200-fold higher than for a murine variable region/human constant region chimeric Fab. This construct was used to prepare combinatorial libraries. Affinity panning of these resulted in the selection of variants with 2- to 8-fold improvements in binding affinity for a phosphonate transition-state analog. Surprisingly, none of the affinity-matured variants was more catalytically active than the parent antibody and some were significantly less active. By contrast, a weaker binding variant was identified with 2-fold greater catalytic activity and incorporation of a single substitution (Tyr-100aH → Asn) from this variant into the parent antibody led to a 5-fold increase in catalytic efficiency. Thus, phage display methods can be readily used to optimize binding of catalytic antibodies to transition-state analogs, and when used in conjunction with limited screening for catalysis can identify variants with higher catalytic efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutamic acid 286 (E286; Escherichia coli cytochrome bo3 numbering) in subunit I of the respiratory heme-copper oxidases is highly conserved and has been suggested to be involved in proton translocation. We report a technique of enzyme reconstitution that yields essentially unidirectionally oriented cytochrome bo3 vesicles in which proton translocation can be measured. Such experiments are not feasible in the E286Q mutant due to strong inhibition of respiration, but this is not the case for the mutants E286D and E286C. The reconstituted E286D mutant enzyme readily translocates protons whereas E286C does not. Loss of proton translocation in the D135N mutant, but not in D135E or D407N, also is verified using proteoliposomes. Stopped-flow experiments show that the peroxy intermediate accumulates in the reaction of the E286Q and E286C mutant enzymes with O2. We conclude that an acidic function of the 286 locus is essential for the mechanism of proton translocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aa3 type cytochrome c oxidase consisting of the core subunits I and II only was isolated from the soil bacterium Paracoccus denitrificans and crystallized as complex with a monoclonal antibody Fv fragment. Crystals could be grown in the presence of a number of different nonionic detergents. However, only undecyl-β-d-maltoside and cyclohexyl-hexyl-β-d-maltoside yielded well-ordered crystals suitable for high resolution x-ray crystallographic studies. The crystals belong to space group P212121 and diffract x-rays to at least 2.5 Å (1 Å = 0.1 nm) resolution using synchrotron radiation. The structure was determined to a resolution of 2.7 Å using molecular replacement and refined to a crystallographic R-factor of 20.5% (Rfree = 25.9%). The refined model includes subunits I and II and the 2 chains of the Fv fragment, 2 heme A molecules, 3 copper atoms, and 1 Mg/Mn atom, a new metal (Ca) binding site, 52 tentatively identified water molecules, and 9 detergent molecules. Only four of the water molecules are located in the cytoplasmic half of cytochrome c oxidase. Most of them are near the interface of subunits I and II. Several waters form a hydrogen-bonded cluster, including the heme propionates and the Mg/Mn binding site. The Fv fragment binds to the periplasmic polar domain of subunit II and is critically involved in the formation of the crystal lattice. The crystallization procedure is well reproducible and will allow for the analysis of the structures of mechanistically interesting mutant cytochrome c oxidases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A catalyst has been synthesized comprising a manganese porphyrin carrying four beta-cyclodextrin groups. It catalyzes the hydroxylation of substrates of appropriate size carrying tert-butylphenyl groups that can hydrophobically bind into the cyclodextrin cavities. In one example as many as 650 catalytic turnovers are seen before the catalyst is oxidatively destroyed, and with a rate comparable to that of typical cytochrome P450 enzymes. In another example, a steroid derivative is regio- and stereoselectively hydroxylated at a single unactivated carbon atom, but more slowly and with fewer turnovers. The carbon attacked is not the most chemically reactive, and the selectivity is determined by the geometry of the catalyst-substrate complex. Nonbinding substrates are not reactive under the conditions used, and substrates with more flexible binding geometries give more than a single product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report evidence for proton-driven subunit rotation in membrane-bound FoF1–ATP synthase during oxidative phosphorylation. A βD380C/γC87 crosslinked hybrid F1 having epitope-tagged βD380C subunits (βflag) exclusively in the two noncrosslinked positions was bound to Fo in F1-depleted membranes. After reduction of the β–γ crosslink, a brief exposure to conditions for ATP synthesis followed by reoxidation resulted in a significant amount of βflag appearing in the β–γ crosslinked product. Such a reorientation of γC87 relative to the three β subunits can only occur through subunit rotation. Rotation was inhibited when proton transport through Fo was blocked or when ADP and Pi were omitted. These results establish FoF1 as the second example in nature where proton transport is coupled to subunit rotation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telomerase is a specialized reverse transcriptase consisting of both RNA and protein components. Previous characterization of yeast telomerase function in vivo identified four EST (for ever shorter telomeres) genes that, when mutated, result in the phenotypes expected for a defect in telomerase. Consistent with this genetic prediction, the EST2 gene has recently been shown to encode the catalytic component of telomerase. Using an in vitro assay, we show here that telomerase activity is present in extracts prepared from yeast strains carrying est1-Δ, est3-Δ, and cdc13–2est mutations. Therefore, while these three genes are necessary for telomerase function in vivo, they do not encode components essential for core catalytic activity. When Est2p, the one EST gene product found to be essential for catalytic activity, was immunoprecipitated from extracts, the telomerase RNA subunit was also specifically precipitated, supporting the conclusion that these two components are in a stable complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between the cAMP receptor protein (CRP) and the carboxy-terminal regulatory domain (CTD) of Escherichia coli RNA polymerase α subunit were analyzed at promoters carrying tandem DNA sites for CRP binding using a chemical nuclease covalently attached to α. Each CRP dimer was found to direct the positioning of one of the two α subunit CTDs. Thus, the function of RNA polymerase may be subject to regulation through protein–protein interactions between the two α subunits and two different species of transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein prenyltransferases catalyze the covalent attachment of isoprenoid lipids (farnesyl or geranylgeranyl) to a cysteine near the C terminus of their substrates. This study explored the specificity determinants for interactions between the farnesyltransferase of Saccharomyces cerevisiae and its protein substrates. A series of substitutions at amino acid 149 of the farnesyltransferase β-subunit were tested in combination with a series of substitutions at the C-terminal amino acid of CaaX protein substrates Ras2p and a-factor. Efficient prenylation was observed when oppositely charged amino acids were present at amino acid 149 of the yeast farnesyltransferase β-subunit and the C-terminal amino acid of the CaaX protein substrate, but not when like charges were present at these positions. This evidence for electrostatic interaction between amino acid 149 and the C-terminal amino acid of CaaX protein substrates leads to the prediction that the C-terminal amino acid of the protein substrate binds near amino acid 149 of the yeast farnesyltransferase β-subunit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-channel recordings were obtained from Chinese hamster ovary cells transfected with the N-methyl-d-aspartate (NMDA) receptor subunit NR1 in combination with NR2A, NR2B, NR2C, or NR2A/NR2B. NMDA-activated currents were recorded under control conditions and in the presence of a thiol reductant (DTT), an oxidant (5,5′-dithio-bis[2-nitrobenzoic acid], DTNB), or the noncompetitive antagonist CP101,606 (CP). For all subunit combinations, DTT increased the frequency of channel opening when compared with DTNB. In addition, channels obtained from NR1/NR2A-transfected cells also exhibited a pronounced difference in mean open dwell-time between redox conditions. CP dramatically reduced both the open dwell-time and frequency of channel opening of NR1/NR2B-containing receptors, but only modestly inhibited NR1/NR2A and NR1/NR2C channel activity. A small number of patches obtained from cells transfected with NR1/NR2A/NR2B had channels with properties intermediate to NR1/NR2A and NR1/NR2B receptors, including insensitivity to CP block but redox properties similar to NR1/NR2B, consistent with the coassembly of NR2A with NR2B. Hence, NMDA receptors containing multiple types of NR2 subunits can have functionally distinguishable attributes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preferential phosphorylation of specific proteins by cAMP-dependent protein kinase (PKA) may be mediated in part by the anchoring of PKA to a family of A-kinase anchor proteins (AKAPs) positioned in close proximity to target proteins. This interaction is thought to depend on binding of the type II regulatory (RII) subunits to AKAPs and is essential for PKA-dependent modulation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor, the L-type Ca2+ channel, and the KCa channel. We hypothesized that the targeted disruption of the gene for the ubiquitously expressed RIIα subunit would reveal those tissues and signaling events that require anchored PKA. RIIα knockout mice appear normal and healthy. In adult skeletal muscle, RIα protein levels increased to partially compensate for the loss of RIIα. Nonetheless, a reduction in both catalytic (C) subunit protein levels and total kinase activity was observed. Surprisingly, the anchored PKA-dependent potentiation of the L-type Ca2+ channel in RIIα knockout skeletal muscle was unchanged compared with wild type although it was more sensitive to inhibitors of PKA–AKAP interactions. The C subunit colocalized with the L-type Ca2+ channel in transverse tubules in wild-type skeletal muscle and retained this localization in knockout muscle. The RIα subunit was shown to bind AKAPs, although with a 500-fold lower affinity than the RIIα subunit. The potentiation of the L-type Ca2+ channel in RIIα knockout mouse skeletal muscle suggests that, despite a lower affinity for AKAP binding, RIα is capable of physiologically relevant anchoring interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human transcription factor B-TFIID is comprised of TATA-binding protein (TBP) in complex with one TBP-associated factor (TAF) of 170 kDa. We report the isolation of the cDNA for TAFII170. By cofractionation and coprecipitation experiments, we show that the protein encoded by the cDNA encodes the TAF subunit of B-TFIID. Recombinant TAFII170 has (d)ATPase activity. Inspection of its primary structure reveals a striking homology with genes of other organisms, yeast MOT1, and Drosophila moira, which belongs to the Trithorax group. Both homologs were isolated in genetic screens as global regulators of pol II transcription. This supports our classification of B-TFIID as a pol II transcription factor and suggests that specific TBP–TAF complexes perform distinct functions during development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two RNases H of mammalian tissues have been described: RNase HI, the activity of which was found to rise during DNA replication, and RNase HII, which may be involved in transcription. RNase HI is the major mammalian enzyme representing around 85% of the total RNase H activity in the cell. By using highly purified calf thymus RNase HI we identified the sequences of several tryptic peptides. This information enabled us to determine the sequence of the cDNA coding for the large subunit of human RNase HI. The corresponding ORF of 897 nt defines a polypeptide of relative molecular mass of 33,367, which is in agreement with the molecular mass obtained earlier by SDS/PAGE. Expression of the cloned ORF in Escherichia coli leads to a polypeptide, which is specifically recognized by an antiserum raised against calf thymus RNase HI. Interestingly, the deduced amino acid sequence of this subunit of human RNase HI displays significant homology to RNase HII from E. coli, an enzyme of unknown function and previously judged as a minor activity. This finding suggests an evolutionary link between the mammalian RNases HI and the prokaryotic RNases HII. The idea of a mammalian RNase HI large subunit being a strongly conserved protein is substantiated by the existence of homologous ORFs in the genomes of other eukaryotes and of all eubacteria and archaebacteria that have been completely sequenced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ab initio structures of 2,7,9-tricarboxypyrroloquinoline quinone (PQQ), semiquinone (PQQH), and dihydroquinone (PQQH2) have been determined and compared with ab initio structures of the (PQQ)Ca2+, (PQQH)Ca2+, and (PQQH2)Ca2+ complexes as well as the x-ray structure of (PQQ)Ca2+ bound at the active site of the methanol dehydrogenase (MDH) of methyltropic bacteria. Plausible mechanisms for the MDH oxidation of methanol involving the (PQQ)Ca2+ complex are explored via ab initio computations and discussed. Considering the reaction of methanol with PQQ in the absence of Ca2+, nucleophilic addition of methanol to the PQQ C-5 carbonyl followed by a retro-ene elimination is deemed unlikely due to large energy barrier. A much more favorable disposition of the methanol C-5 adduct to provide formaldehyde involves proton ionization of the intermediate followed by elimination of methoxide concerted with hydride transfer to the oxygen of the C-4 carbonyl. Much the same transition state is reached if one searches for the transition state beginning with Asp-303–CO2−general-base removal of the methanol proton of the (PQQ)Ca2+O(H)CH3 complex concerted with hydride transfer to the oxygen at C-4. For such a mechanism the role of the Ca2+ moiety would be to (i) contribute to the formation of the ES complex (ii) provide a modest decrease in the pKa of methanol substrate,; and (iii) polarize the oxygen at C-5.