193 resultados para CMC (Comunication Mediated by Computer)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ink4a/Arf locus encodes p16Ink4a and p19Arf and is among the most frequently mutated tumor suppressor loci in human cancer. In mice, many of these effects appear to be mediated by interactions between p19Arf and the p53 tumor-suppressor protein. Because Tp53 mutations are a common feature of the multistep pre-B cell transformation process mediated by Abelson murine leukemia virus (Ab-MLV), we examined the possibility that proteins encoded by the Ink4a/Arf locus also play a role in Abelson virus transformation. Analyses of primary transformants revealed that both p16Ink4a and p19Arf are expressed in many of the cells as they emerge from the apoptotic crisis that characterizes the transformation process. Analyses of primary transformants from Ink4a/Arf null mice revealed that these cells bypassed crisis. Because expression of p19Arf but not p16 Ink4a induced apoptosis in Ab-MLV-transformed pre-B cells, p19Arf appears to be responsible for these events. Consistent with the link between p19Arf and p53, Ink4a/Arf expression correlates with or precedes the emergence of cells expressing mutant p53. These data demonstrate that p19Arf is an important part of the cellular defense mounted against transforming signals from the Abl oncoprotein and provide direct evidence that the p19Arf–p53 regulatory loop plays an important role in lymphoma induction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A synchronized heart beat is controlled by pacemaking impulses conducted through Purkinje fibers. In chicks, these impulse-conducting cells are recruited during embryogenesis from myocytes in direct association with developing coronary arteries. In culture, the vascular cytokine endothelin converts embryonic myocytes to Purkinje cells, implying that selection of conduction phenotype may be mediated by an instructive cue from arteries. To investigate this hypothesis, coronary arterial development in the chicken embryo was either inhibited by neural crest ablation or activated by ectopic expression of fibroblast growth factor (FGF). Ablation of cardiac neural crest resulted in ≈70% reductions (P < 0.01) in the density of intramural coronary arteries and associated Purkinje fibers. Activation of coronary arterial branching was induced by retrovirus-mediated overexpression of FGF. At sites of FGF-induced hypervascularization, ectopic Purkinje fibers differentiated adjacent to newly induced coronary arteries. Our data indicate the necessity and sufficiency of developing arterial bed for converting a juxtaposed myocyte into a Purkinje fiber cell and provide evidence for an inductive function for arteriogenesis in heart development distinct from its role in establishing coronary blood circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-cycle progression is mediated by a coordinated interaction between cyclin-dependent kinases and their target proteins including the pRB and E2F/DP-1 complexes. Immunoneutralization and antisense experiments have established that the abundance of cyclin D1, a regulatory subunit of the cyclin-dependent kinases, may be rate-limiting for G1 phase progression of the cell cycle. Simian virus 40 (SV40) small tumor (t) antigen is capable of promoting G1 phase progression and augments substantially the efficiency of SV40 transformation through several distinct domains. In these studies, small t antigen stimulated cyclin D1 promoter activity 7-fold, primarily through an AP-1 binding site at −954 with additional contributions from a CRE site at −57. The cyclin D1 AP-1 and CRE sites were sufficient for activation by small t antigen when linked to an heterologous promoter. Point mutations of small t antigen between residues 97–103 that reduced PP2A binding were partially defective in the induction of the cyclin D1 promoter. These mutations also reduced activation of MEK1 and two distinct members of the mitogen-activated protein kinase family, the ERKs (extracellular signal regulated kinases) and the SAPKs (stress-activated protein kinases), in transfected cells. Dominant negative mutants of either MEK1, ERK or SEK1, reduced small t-dependent induction of the cyclin D1 promoter. SV40 small t induction of the cyclin D1 promoter involves both the ERK and SAPK pathways that together may contribute to the proliferative and transformation enhancing activity of small t antigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective hematopoiesis requires the commitment of pluripotent and multipotent stem cells to distinct differentiation pathways, proliferation and maturation of cells in the various lineages, and preservation of pluripotent progenitors to provide continuous renewal of mature blood cells. While the importance of positive and negative cytokines in regulating proliferation and maturation of hematopoietic cells has been well documented, the factors and molecular processes involved in lineage commitment and self-renewal of multipotent progenitors have not yet been defined. In other developmental systems, cellular interactions mediated by members of the Notch gene family have been shown to influence cell fate determination by multipotent progenitors. We previously described the expression of the human Notch1 homolog, TAN-1, in immature hematopoietic precursors. We now demonstrate that constitutive expression of the activated intracellular domain of mouse Notch1 in 32D myeloid progenitors inhibits granulocytic differentiation and permits expansion of undifferentiated cells, findings consistent with the known function of Notch in other systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To gain more insight into the molecular mechanisms by which androgens stimulate lipogenesis and induce a marked accumulation of neutral lipids in the human prostate cancer cell line LNCaP, we studied their impact on the expression of lipogenic enzymes. Northern blot analysis of the steady-state mRNA levels of seven different lipogenic enzymes revealed that androgens coordinately stimulate the expression of enzymes belonging to the two major lipogenic pathways: fatty acid synthesis and cholesterol synthesis. In view of the important role of the recently characterized sterol regulatory element binding proteins (SREBPs) in the coordinate induction of lipogenic genes, we examined whether the observed effects of androgens on lipogenic gene expression are mediated by these transcription factors. Our findings indicate that androgens stimulate the expression of SREBP transcripts and precursor proteins and enhance the nuclear content of the mature active form of the transcription factor. Moreover, by using the fatty acid synthase gene as an experimental paradigm we demonstrate that the presence of an SREBP-binding site is essential for its regulation by androgens. These data support the hypothesis that SREBPs are involved in the coordinate regulation of lipogenic gene expression by androgens and provide evidence for the existence of a cascade mechanism of androgen-regulated gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurotrophins, secreted in an activity-dependent manner, are thought to be involved in the activity-dependent refinement of synaptic connections. Here we demonstrate that in hippocampal neurons and the rat pheochromocytoma cell line PC12 application of exogenous neurotrophins induces secretion of neurotrophins, an effect that is mediated by the activation of tyrosine kinase neurotrophin receptors (Trks). Like activity-dependent secretion of neurotrophins, neurotrophin-induced neurotrophin secretion requires mobilization of calcium from intracellular stores. Because neurotrophins are likely to be released from both dendrites and axons, neurotrophin-induced neurotrophin release represents a potential positive feedback mechanism, contributing to the reinforcement and stabilization of synaptic connections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide growth factors were isolated from conditioned medium derived from rice (Oryza sativa L.) suspension cultures and identified to be a sulfated pentapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-Gln-OH] and its C-terminal-truncated tetrapeptide [H-Tyr(SO3H)-Ile-Tyr(SO3H)-Thr-OH]. These structures were identical to the phytosulfokines originally found in asparagus (Asparagus officinalis L.) mesophyll cultures. The pentapeptide [phytosulfokine-α (PSK-α)] very strongly stimulated colony formation of rice protoplasts at concentrations above 10−8 M, indicating a similar mode of action in rice of phytosulfokines. Binding assays using 35S-labeled PSK-α demonstrated the existence of both high- and low-affinity specific saturable binding sites on the surface of rice cells in suspension. Analysis of [35S]PSK-α binding in differential centrifugation fractions suggested association of the binding with a plasma membrane-enriched fraction. The apparent Kd values for [35S]PSK-α binding were found to be 1 × 10−9 M for the high-affinity type and 1 × 10−7 M for the low-affinity type, with maximal numbers of binding sites of 1 × 104 sites per cell and 1 × 105 sites per cell, respectively. Competition studies with [35S]PSK-α and several synthetic PSK-α analogs demonstrated that only peptides that possesses mitogenic activity can effectively displace the radioligand. These results suggest that a signal transduction pathway mediated by peptide factors is involved in plant cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice with a targeted mutation of the gastric inhibitory polypeptide (GIP) receptor gene (GIPR) were generated to determine the role of GIP as a mediator of signals from the gut to pancreatic β cells. GIPR−/− mice have higher blood glucose levels with impaired initial insulin response after oral glucose load. Although blood glucose levels after meal ingestion are not increased by high-fat diet in GIPR+/+ mice because of compensatory higher insulin secretion, they are significantly increased in GIPR−/− mice because of the lack of such enhancement. Accordingly, early insulin secretion mediated by GIP determines glucose tolerance after oral glucose load in vivo, and because GIP plays an important role in the compensatory enhancement of insulin secretion produced by a high insulin demand, a defect in this entero-insular axis may contribute to the pathogenesis of diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-efficiency entry of the enteropathogenic bacterium Yersinia pseudotuberculosis into nonphagocytic cells is mediated by the bacterial outer membrane protein invasin. Invasin-mediated uptake requires high affinity binding of invasin to multiple β1 chain integrin receptors on the host eukaryotic cell. Previous studies using inhibitors have indicated that high-efficiency uptake requires tyrosine kinase activity. In this paper we demonstrate a requirement for focal adhesion kinase (FAK) for invasin-mediated uptake. Overexpression of a dominant interfering form of FAK reduced the amount of bacterial entry. Specifically, the autophosphorylation site of FAK, which is a reported site of c-Src kinase binding, is required for bacterial internalization, as overexpression of a derivative lacking the autophosphorylation site had a dominant interfering effect as well. Cultured cells expressing interfering variants of Src kinase also showed reduced bacterial uptake, demonstrating the involvement of a Src-family kinase in invasin-promoted uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac hypertrophy and dilatation can result from stimulation of signal transduction pathways mediated by heterotrimeric G proteins, especially Gq, whose α subunit activates phospholipase Cβ (PLCβ). We now report that transient, modest expression of a hemagglutinin (HA) epitope-tagged, constitutively active mutant of the Gq α subunit (HAα*q) in hearts of transgenic mice is sufficient to induce cardiac hypertrophy and dilatation that continue to progress after the initiating stimulus becomes undetectable. At 2 weeks, HAα*q protein is expressed at less than 50% of endogenous αq/11, and the transgenic hearts are essentially normal morphologically. Although HAα*q protein declines at 4 weeks and is undetectable by 10 weeks, the animals develop cardiac hypertrophy and dilatation and die between 8 and 30 weeks in heart failure. As the pathology develops, endogenous αq/11 rises (2.9-fold in atria; 1.8-fold in ventricles). At 2 weeks, basal PLC activity is increased 9- to 10-fold in atria but not ventricles. By 10 weeks, it is elevated in both, presumably because of the rise in endogenous αq/11. We conclude that the pathological changes initiated by early, transient HAα*q expression are maintained in part by compensatory changes in signal transduction and other pathways. Cyclosporin A (CsA) prevents hypertrophy caused by activation of calcineurin [Molkentin, J. D., Lu, J.-R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R. & Olson, E. N. (1998) Cell 93, 215–228]. Because HAα*q acts upstream of calcineurin, we hypothesized that HAα*q might initiate additional pathways leading to hypertrophy and dilatation. Treating HAα*q mice with CsA diminished some, but not all, aspects of the hypertrophic phenotype, suggesting that multiple pathways are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The v-jun oncogene encodes a nuclear DNA binding protein that functions as a transcription factor and is part of the activator protein 1 complex. Oncogenic transformation by v-jun is thought to be mediated by the aberrant expression of specific target genes. To identify such Jun-regulated genes and to explore the mechanisms by which Jun affects their expression, we have fused the full-length v-Jun and an amino-terminally truncated form of v-Jun to the hormone-binding domain of the human estrogen receptor. The two chimeric proteins function as ligand-inducible transactivators. Expression of the fusion proteins in chicken embryo fibroblasts causes estrogen-dependent transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipid signaling mediated by lipid-derived second messengers or biologically active lipids is still new and is not well established in plants. We recently have found that lysophosphatidylethanolamine (LPE), a naturally occurring lipid, retards senescence of leaves, flowers, and postharvest fruits. Phospholipase D (PLD) has been suggested as a key enzyme in mediating the degradation of membrane phospholipids during the early stages of plant senescence. Here we report that LPE inhibited the activity of partially purified cabbage PLD in a cell-free system in a highly specific manner. Inhibition of PLD by LPE was dose-dependent and increased with the length and unsaturation of the LPE acyl chain whereas individual molecular components of LPE such as ethanolamine and free fatty acid had no effect on PLD activity. Enzyme-kinetic analysis suggested noncompetitive inhibition of PLD by LPE. In comparison, the related lysophospholipids such as lysophosphatidylcholine, lysophosphatidylglycerol, and lysophosphotidylserine had no significant effect on PLD activity whereas PLD was stimulated by lysophosphatidic acid and inhibited by lysophosphatidylinositol. Membrane-associated and soluble PLD, extracted from cabbage and castor bean leaf tissues, also was inhibited by LPE. Consistent with acyl-specific inhibition of PLD by LPE, senescence of cranberry fruits as measured by ethylene production was more effectively inhibited according to the increasing acyl chain length and unsaturation of LPE. There are no known specific inhibitors of PLD in plants and animals. We demonstrate specific inhibitory regulation of PLD by a lysophospholipid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scatter factor/hepatocyte growth factor regulates scattering and morphogenesis of epithelial cells through activation of the MET tyrosine kinase receptor. In particular, the noncatalytic C-terminal tail of MET contains two autophosphorylation tyrosine residues, which form a multisubstrate-binding site for several cytoplasmic effectors and are thought to be essential for signal transduction. We show here that a MET receptor mutated on the four C-terminal tyrosine residues, Y1311F, Y1347F, Y1354F, and Y1363F, can induce efficiently a transcriptional response and cell scattering, whereas it cannot induce cell morphogenesis. Although the mutated receptor had lost its ability to recruit and/or activate known signaling molecules, such as GRB2, SHC, GAB1, and PI3K, by using a sensitive association–kinase assay we found that the mutated receptor can still associate and phosphorylate a ∼250-kDa protein. By further examining signal transduction mediated by the mutated MET receptor, we established that it can transmit efficient RAS signaling and that cell scattering by the mutated MET receptor could be inhibited by a pharmacological inhibitor of the MEK-ERK (MAP kinase kinase–extracellular signal-regulated kinase) pathway. We propose that signal transduction by autophosphorylation of the C-terminal tyrosine residues is not the sole mechanism by which the activated MET receptor can transmit RAS signaling and cell scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatocyte growth factor/scatter factor (HGF/SF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of colonies followed by disruption of cell–cell junctions and subsequent cell scattering. In Madin–Darby canine kidney cells, HGF/SF-induced motility involves actin reorganization mediated by Ras, but whether Ras and downstream signals regulate the breakdown of intercellular adhesions has not been established. Both HGF/SF and V12Ras induced the loss of the adherens junction proteins E-cadherin and β-catenin from intercellular junctions during cell spreading, and the HGF/SF response was blocked by dominant-negative N17Ras. Desmosomes and tight junctions were regulated separately from adherens junctions, because they were not disrupted by V12Ras. MAP kinase, phosphatidylinositide 3-kinase (PI 3-kinase), and Rac were required downstream of Ras, because loss of adherens junctions was blocked by the inhibitors PD098059 and LY294002 or by dominant-inhibitory mutants of MAP kinase kinase 1 or Rac1. All of these inhibitors also prevented HGF/SF-induced cell scattering. Interestingly, activated Raf or the activated p110α subunit of PI 3-kinase alone did not induce disruption of adherens junctions. These results indicate that activation of both MAP kinase and PI 3-kinase by Ras is required for adherens junction disassembly and that this is essential for the motile response to HGF/SF.