109 resultados para BOUND CONFORMATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact, well-organized, and natural motif, stabilized by three disulfide bonds, is proposed as a basic scaffold for protein engineering. This motif contains 37 amino acids only and is formed by a short helix on one face and an antiparallel triple-stranded beta-sheet on the opposite face. It has been adopted by scorpions as a unique scaffold to express a wide variety of powerful toxic ligands with tuned specificity for different ion channels. We further tested the potential of this fold by engineering a metal binding site on it, taking the carbonic anhydrase site as a model. By chemical synthesis we introduced nine residues, including three histidines, as compared to the original amino acid sequence of the natural charybdotoxin and found that the new protein maintains the original fold, as revealed by CD and 1H NMR analysis. Cu2+ ions are bound with Kd = 4.2 x 10(-8) M and other metals are bound with affinities in an order mirroring that observed in carbonic anhydrase. The alpha/beta scorpion motif, small in size, easily amenable to chemical synthesis, highly stable, and tolerant for sequence mutations represents, therefore, an appropriate scaffold onto which polypeptide sequences may be introduced in a predetermined conformation, providing an additional means for design and engineering of small proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the pathway of folding of barnase bound to GroEL to resolve the controversy of whether proteins can fold while bound to chaperonins (GroEL or Cpn60) or fold only after their release into solution. Four phases in the folding were detected by rapid-reaction kinetic measurements of the intrinsic fluorescence of both wild type and barnase mutants. The phases were assigned from their rate laws, sensitivity to mutations, and correspondence to regain of catalytic activity. At high ratios of denatured barnase to GroEL, 4 mol of barnase rapidly bind per 14-mer of GroEL. At high ratios of GroEL to barnase, 1 mol of barnase binds with a rate constant of 3.5 x 10(7) s-1.M-1. This molecule then refolds with a low rate constant that changes on mutation in parallel with the rate constant for the folding in solution. This rate constant corresponds to the regain of the overall catalytic activity of barnase and increases 15-fold on the addition of ATP to a physiologically relevant value of approximately 0.4 s-1. The multiply bound molecules of barnase that are present at high ratios of GroEL to barnase fold with a rate constant that is also sensitive to mutation but is 10 times higher. If the 110-residue barnase can fold when bound to GroEL and many moles can bind simultaneously, then smaller parts of large proteins should be able to fold while bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have inserted a fourth protein ligand into the zinc coordination polyhedron of carbonic anhydrase II (CAII) that increases metal affinity 200-fold (Kd = 20 fM). The three-dimensional structures of threonine-199-->aspartate (T199D) and threonine-199-->glutamate (T199E) CAIIs, determined by x-ray crystallographic methods to resolutions of 2.35 Angstrum and 2.2 Angstrum, respectively, reveal a tetrahedral metal-binding site consisting of H94, H96, H119, and the engineered carboxylate side chain, which displaces zinc-bound hydroxide. Although the stereochemistry of neither engineered carboxylate-zinc interaction is comparable to that found in naturally occurring protein zinc-binding sites, protein-zinc affinity is enhanced in T199E CAII demonstrating that ligand-metal separation is a significant determinant of carboxylate-zinc affinity. In contrast, the three-dimensional structure of threonine-199-->histidine (T199H) CAII, determined to 2.25-Angstrum resolution, indicates that the engineered imidazole side chain rotates away from the metal and does not coordinate to zinc; this results in a weaker zinc-binding site. All three of these substitutions nearly obliterate CO2 hydrase activity, consistent with the role of zinc-bound hydroxide as catalytic nucleophile. The engineering of an additional protein ligand represents a general approach for increasing protein-metal affinity if the side chain can adopt a reasonable conformation and achieve inner-sphere zinc coordination. Moreover, this structure-assisted design approach may be effective in the development of high-sensitivity metal ion biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suppressor of Hairy-wing [su(Hw)] protein exerts a polar effect on gene expression by repressing the function of transcriptional enhancers located distally from the promoter with respect to the location of su(Hw) binding sequences. The directionality of this effect suggests that the su(Hw) protein specifically interferes with the basic mechanism of enhancer action. Moreover, mutations in modifier of mdg4 [mod(mdg4)] result in the repression of expression of a gene when the su(Hw) protein is bound to sequences in the copy of this gene located in the homologous chromosome. This effect is dependent on the presence of the su(Hw) binding region from the gypsy retrotransposon in at least one of the chromosomes and is enhanced by the presence of additional gypsy sequences in the other homology. This phenomenon is inhibited by chromosomal rearrangements that disrupt pairing, suggesting that close apposition between the two copies of the affected gene is important for trans repression of transcription. These results indicate that, in the absence of mod-(mdg4) product, the su(Hw) protein present in one chromosome can act in trans and inactivate enhancers located in the other homolog.