152 resultados para Antioxidative enzyme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ubiquitin-conjugating enzymes (E2 or Ubc) constitute a family of conserved proteins that play a key role in ubiquitin-dependent degradation of proteins in eukaryotes. We describe here a transgenic mouse strain where retrovirus integration into an Ubc gene, designated UbcM4, results in a recessive-lethal mutation. UbcM4 is the mouse homologue of the previously described human UbcH7 that is involved in the in vitro ubiquitination of several proteins including the tumor suppressor protein p53. The provirus is located in the first intron of the gene. When both alleles are mutated the level of steady-state mRNA is reduced by about 70%. About a third of homozygous mutant embryos die around day 11.5 of gestation. Embryos that survive that stage are growth retarded and die perinatally. The lethal phenotype is most likely caused by impairment of placenta development as this is the only organ that consistently showed pathological defects. The placental labyrinth is drastically reduced in size and vascularization is disturbed. The UbcM4 mouse mutant represents the first example in mammals of a mutation in a gene involved in ubiquitin conjugation. Its recessive-lethal phenotype demonstrates that the ubiquitin system plays an essential role during mouse development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNase mitochondrial RNA processing enzyme (MRP) is a nucleolar ribonucleoprotein particle that participates in 5.8S ribosomal RNA maturation in eukaryotes. This enzyme shares a polypeptide and an RNA structural motif with ribonuclease P (RNase P), a nuclear endoribonuclease originally described in the nucleus that processes RNA transcripts to generate their mature 5' termini. Both enzymes are also located in mitochondria. This report further characterizes the relationship between RNase MRP and RNase P. Antisense affinity selection with biotinylated 2'-O-methyl oligoribonucleotides and glycerol gradient fractionation experiments demonstrated that small subpopulations of RNase MRP and RNase P associate with each other in vivo in macromolecular complex, possibly 60-80S preribosomes. This latter notion was supported by fluorescence in situ hybridization experiments with antisense oligonucleotides that localized that RNA components of RNase MRP and RNase P to the nucleolus and to discrete cytoplasmic structures. These findings suggest that small subpopulations of RNase MRP and RNase P are physically associated, and that both may function in ribosomal RNA maturation or ribosome assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The covalent joining of topoisomerases to DNA is normally a transient step in the reaction cycle of these important enzymes. However, under a variety of circumstances, the covalent complex is converted to a long-lived or dead-end product that can result in chromosome breakage and cell death. We have discovered and partially purified an enzyme that specifically cleaves the chemical bond that joins the active site tyrosine of topoisomerases to the 3' end of DNA. The reaction products made by the purified enzyme on a variety of model substrates indicate that the enzyme cleanly hydrolyzes the tyrosine-DNA phosphodiester linkage, thereby liberating a DNA terminated with a 3' phosphate. The wide distribution of this phosphodiesterase in eukaryotes and its specificity for tyrosine linked to the 3' end but not the 5' end of DNA suggest that it plays a role in the repair of DNA trapped in complexes involving eukaryotic topoisomerase I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The key enzyme of chlorophyll biosynthesis in higher plants, NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR, EC 1.3.1.33), accumulates in its precursor form (pPORA) in barley. pPORA is bound to the chloroplasts and is able to interact with the enzyme's substrate, Pchlide, at both the cytosolic as well as the stromal side of the plastid envelope. The interaction with intraplastidic Pchlide, formed in ATP-containing chloroplasts upon feeding with -aminolevulinic acid, drives vectorial translocation of pPORA across the plastid envelope membranes. In contrast, exogenously applied Pchlide causes the release of the envelope-bound precursor protein to the cytosol. Both processes compete with each other if intra- and extraplastidic Pchlide are applied simultaneously. A cytosolic heat shock cognate protein of Mr 70,000 present in wheat germ and barley leaf protein extracts appears to prevent the release of the pPORA to the cytosol in vivo, however.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytotoxic T lymphocytes (CTL) can induce apoptosis through a granzyme B-based killing mechanism. Here we show that in cells undergoing apoptosis by granzyme B, both p45 pro-interleukin 1 beta converting enzyme (ICE) and pro-CPP32 are processed. Using ICE deficient (ICE -/-) mice, embryonic fibroblasts exhibit high levels of resistance to apoptosis by granzyme B or granzyme 3, while B lymphoblasts are granzyme B-resistant, thus identifying an ICE-dependent apoptotic pathway that is activated by CTL granzymes. In contrast, an alternative ICE-independent pathway must also be activated as ICE -/- thymocytes remain susceptible to apoptosis by both granzymes. In ICE -/- B cells or HeLa cells transfected with mutant inactive ICE or Ich-1S that exhibit resistance to granzyme B, CPP32 is processed to p17 and poly(ADP-ribose) polymerase is cleaved indicating that this protease although activated was not associated with an apoptotic nuclear phenotype. Using the peptide inhibitor Ac-DEVD-CHO, apoptosis as well as p45 ICE hydrolysis are suppressed in HeLa cells, suggesting that a CPP32-like protease is upstream of ICE. In contrast, p34cdc2 kinase, which is required for granzyme B-induced apoptosis, remains inactive in ICE -/- B cells indicating it is downstream of ICE. We conclude that granzyme B activates an ICE-dependent cell death pathway in some cell types and requires a CPP32-like Ac-DEVD-CHO inhibitable protease acting upstream to initiate apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum is the major causative agent of malaria, a disease of worldwide importance. Resistance to current drugs such as chloroquine and mefloquine is spreading at an alarming rate, and our antimalarial armamentarium is almost depleted. The malarial parasite encodes two homologous aspartic proteases, plasmepsins I and II, which are essential components of its hemoglobin-degradation pathway and are novel targets for antimalarial drug development. We have determined the crystal structure of recombinant plasmepsin II complexed with pepstatin A. This represents the first reported crystal structure of a protein from P. falciparum. The crystals contain molecules in two different conformations, revealing a remarkable degree of interdomain flexibility of the enzyme. The structure was used to design a series of selective low molecular weight compounds that inhibit both plasmepsin II and the growth of P. falciparum in culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA encoding human gamma-glutamyl hydrolase has been identified by searching an expressed sequence tag data base and using rat gamma-glutamyl hydrolase cDNA as the query sequence. The cDNA encodes a 318-amino acid protein of Mr 35,960. The deduced amino acid sequence of human gamma-glutamyl hydrolase shows 67% identity to that of rat gamma-glutamyl hydrolase. In both rat and human the 24 amino acids preceding the N terminus constitute a structural motif that is analogous to a leader or signal sequence. There are four consensus asparagine glycosylation sites in the human sequence, with three of them conserved in the rat enzyme. Expression of both the human and rat cDNA in Escherichia coli produced antigenically related proteins with enzyme activities characteristic of the native human and rat enzymes, respectively, when methotrexate di- or pentaglutamate were used as substrates. With the latter substrate the rat enzyme cleaved the innermost gamma-glutamyl linkage resulting in the sole production of methotrexate as the pteroyl containing product. The human enzyme differed in that it produced methotrexate tetraglutamate initially, followed by the triglutamate, and then the diglutamate and methotrexate. Hence the rat enzyme is an endopeptidase with methotrexate pentaglutamate as substrate, whereas the human enzyme exhibits exopeptidase activity. Another difference is that the expressed rat enzyme is equally active on methotrexate di- and pentaglutamate whereas the human enzyme has severalfold greater activity on methotrexate pentaglutamate compared with the diglutamate. These properties are consistent with the enzymes derived from human and rat sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain matrix metalloproteinases (MMP) are expressed within the fibrous areas surrounding acellular lipid cores of atherosclerotic plaques, suggesting that these proteinases degrade matrix proteins within these areas and weaken the structural integrity of the lesion. We report that matrilysin and macrophage metalloelastase, two broad-acting MMPs, were expressed in human atherosclerotic lesions in carotid endarterectomy samples (n = 18) but were not expressed in normal arteries (n = 7). In situ hybridization and immunohistochemistry revealed prominent expression of matrilysin in cells confined to the border between acellular lipid cores and overlying fibrous areas, a distribution distinct from other MMPs found in similar lesions. Metalloelastase was expressed in these same border areas. Matrilysin was present in lipid-laden macrophages, identified by staining with anti-CD-68 antibody. Furthermore, endarterectomy tissue in organ culture released matrilysin. Staining for versican demonstrated that this vascular proteoglycan was present at sites of matrilysin expression. Biochemical studies showed that matrilysin degraded versican much more efficiently than other MMPs present in atherosclerotic lesions. Our findings suggest that matrilysin, specifically expressed in atherosclerotic lesions, could cleave structural proteoglycans and other matrix components, potentially leading to separation of caps and shoulders from lipid cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteolysis of short N alpha-protected peptide substrates bound to polyoxyethylene-polystyrene beads releases selectively free amino sites in the enzyme-accessible "surface" area. The substantial majority of functional sites in the "interior" of the polymeric support are not reached by the enzyme and remain uncleaved (protected). Subsequent synthesis with two classes of orthogonal protecting groups-N alpha-tert-butyloxycarbonyl (Boc) and N alpha-9-fluorenylmethyloxy-carbonyl (Fmoc)-allows generation of two structures on the same bead. The surface structure is available for receptor interactions, whereas the corresponding interior structure is used for coding. Coding structures are usually readily sequenceable peptides. This "shaving" methodology was illustrated by the preparation of a peptide-encoded model peptide combinatorial library containing 1.0 x 10(5) members at approximately 6-fold degeneracy. From this single library, good ligands were selected for three different receptors: anti-beta-endorphin anti-body, streptavidin, and thrombin, and the binding structures were deduced correctly by sequencing the coding peptides present on the same beads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although proteases related to the interleukin 1 beta-converting enzyme (ICE) are known to be essential for apoptotic execution, the number of enzymes involved, their substrate specificities, and their specific roles in the characteristic biochemical and morphological changes of apoptosis are currently unknown. These questions were addressed using cloned recombinant ICE-related proteases (IRPs) and a cell-free model system for apoptosis (S/M extracts). First, we compared the substrate specificities of two recombinant human IRPs, CPP32 and Mch2 alpha. Both enzymes cleaved poly-(ADP-ribose) polymerase, albeit with different efficiencies. Mch2 alpha also cleaved recombinant and nuclear lamin A at a conserved VEID decreases NG sequence located in the middle of the coiled-coil rod domain, producing a fragment that was indistinguishable from the lamin A fragment observed in S/M extracts and in apoptotic cells. In contrast, CPP32 did not cleave lamin A. The cleavage of lamin A by Mch2 alpha and by S/M extracts was inhibited by millimolar concentrations of Zn2+, which had a minimal effect on cleavage of poly (ADP-ribose) polymerase by CPP32 and by S/M extracts. We also found that N-(acetyltyrosinylvalinyl-N epsilon-biotinyllysyl)aspartic acid [(2,6-dimethylbenzoyl)oxy]methyl ketone, which derivatizes the larger subunit of active ICE, can affinity label up to five active IRPs in S/M extracts. Together, these observations indicate that the processing of nuclear proteins in apoptosis involves multiple IRPs having distinct preferences for their apoptosis-associated substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospray ionization time-of-flight (ESI-TOF) mass spectrometry was used to study the quaternary structure of 4-oxalocrotonate tautomerase (EC 5.3.2; 4OT), and four analogues prepared by total chemical synthesis. Wild-type 4OT is a hexamer of 62 amino acid subunits and contains no cysteine residues. The analogues were: (desPro1)4OT, a truncated construct in which Pro1 was deleted; (Cpc1)4OT in which Pro1 was replaced with cyclopentane carboxylate; a derivative [Met(O)45]4OT in which Met45 was oxidized to the sulfoxide; and an analogue (Nle45)4OT in which Met45 was replaced with norleucine. ESI of (Nle45)4OT, (Cpc1)4OT, and 4OT from solution conditions under which the native enzyme was fully active (5 mM ammonium bicarbonate buffer, pH 7.5) gave the intact hexamer as the major species detected by TOF mass spectrometry. In contrast, analysis of [Met(O)45]4OT and (desPro1)4OT under similar conditions yielded predominantly monomer ions. The ESI-TOF measurements were consistent with structural data obtained from circular dichroism spectroscopy. In the context of kinetic data collected for 4OT and these analogues, ESI-TOF mass spectrometry also provided important evidence for the structural and mechanistic significance of the catalytically important Pro1 residue in 4OT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs both ensure accurate RNA recognition and prevent the binding of noncognate substrates. Here we show for Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) that the accuracy of tRNA recognition also determines the efficiency of cognate amino acid recognition. Steady-state kinetics revealed that interactions between tRNA identity nucleotides and their recognition sites in the enzyme modulate the amino acid affinity of GlnRS. Perturbation of any of the protein-RNA interactions through mutation of either component led to considerable changes in glutamine affinity with the most marked effects seen at the discriminator base, the 10:25 base pair, and the anticodon. Reexamination of the identity set of tRNA(Gln) in the light of these results indicates that its constituents can be differentiated based upon biochemical function and their contribution to the apparent Gibbs' free energy of tRNA binding. Interactions with the acceptor stem act as strong determinants of tRNA specificity, with the discriminator base positioning the 3' end. The 10:25 base pair and U35 are apparently the major binding sites to GlnRS, with G36 contributing both to binding and recognition. Furthermore, we show that E. coli tryptophanyl-tRNA synthetase also displays tRNA-dependent changes in tryptophan affinity when charging a noncognate tRNA. The ability of tRNA to optimize amino acid recognition reveals a novel mechanism for maintaining translational fidelity and also provides a strong basis for the coevolution of tRNAs and their cognate synthetases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bacterial phosphoenolpyruvate/glycose phosphotransferase system (PTS) comprises a group of proteins that catalyze the transfer of the phosphoryl group from phosphoenolpyruvate (PEP) to sugars concomitant with their translocation. The first two steps of the phosphotransfer sequence are PEP <--> Enzyme I (EI) <--> HPr (the histidine-containing phosphocarrier protein). We have proposed that many functions of the PTS are regulated by EI, which undergoes a monomer/dimer transition. EI monomer (63.5 kDa) comprises two major domains: a flexible C-terminal domain (EI-C) and a protease-resistant, structurally stable N-terminal domain (EI-N) containing the active site His. Trypsin treatment of Salmonella typhimurium EI yielded EI-N, designated EI-N(t). Homogeneous recombinant Escherichia coli EI-N [i.e., EI-N(r)], has now been prepared in quantity, shows the expected thermodynamic unfolding properties and, similarly to EI-N(t), is phosphorylated by phospho-HPr, but not by PEP. In addition, binding of EI-N(r) to HPr was studied by isothermal titration calorimetry: K/a = 1.4 x 10(5) M(-1) and delta H = +8.8 kcal x mol(-1). Both values are comparable to those for HPr binding to intact EI. Fluorescence anisotropy [dansyl-EI-N(r)] and gel filtration of EI-N(r) show that it does not dimerize. These results emphasize the role of EI-C in dimerization and the regulation of intact EI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RNA editing in the nucleus of higher eukaryotes results in subtle changes to the RNA sequence, with the ability to effect dramatic changes in biological function. The first example to be described and among the best characterized, is the cytidine-to-uridine editing of apolipoprotein B (apo-B) RNA. The editing of apo-B RNA is mediated by a novel cytidine deaminase, apobec-1, which has acquired the ability to bind RNA. The stop translation codon generated by the editing of apo-B RNA truncates the full-length apo-B100 to form apo-B48. The recent observations of tumor formation in Apobec-1 transgenic animals, together with the fact that Apobec-1 is expressed in numerous tissues lacking apo-B, raises the issue of whether this enzyme is essential for a variety of posttranscriptional editing events. To directly test this, mice were created with a null mutation in Apobec-1 using homologous recombination in embryonic stem cells. Mice, homozygous for this mutation, were viable and made apo-B100 but not apo-B48. The null animals were fertile, and a variety of histological, behavioral, and morphological analyses revealed no phenotype other than abnormalities in lipoprotein metabolism, which included an increased low density lipoprotein fraction and a reduction in high density lipoprotein cholesterol. These studies demonstrate that neither apobec-1 nor apo-B48 is essential for viability and suggest that the major role of apobec-1 may be confined to the modulation of lipid transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the fundamental questions concerning expression and function of dimeric enzymes involves the impact of naturally occurring mutations on subunit assembly and heterodimer activity. This question is of particular interest for the human enzyme galactose-l-phosphate uridylyl-transferase (GALT), impairment of which results in the inherited metabolic disorder galactosemia, because many if not most patients studied to date are compound heterozygotes rather than true molecular homozygotes. Furthermore, the broad range of phenotypic severity observed in these patients raises the possibility that allelic combination, not just allelic constitution, may play some role in determining outcome. In the work described herein, we have selected two distinct naturally occurring null mutations of GALT, Q188R and R333W, and asked the questions (i) what are the impacts of these mutations on subunit assembly, and (ii) if heterodimers do form, are they active? To answer these questions, we have established a yeast system for the coexpression of epitope-tagged alleles of human GALT and investigated both the extent of specific GALT subunit interactions and the activity of defined heterodimer pools. We have found that both homodimers and heterodimers do form involving each of the mutant subunits tested and that both heterodimer pools retain substantial enzymatic activity. These results are significant not only in terms of their implications for furthering our understanding of galactosemia and GALT holoenzyme structure-function relationships but also because the system described may serve as a model for similar studies of other complexes composed of multiple subunits.