164 resultados para ACTIVATED GAAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPARs) are dietary lipid sensors that regulate fatty acid and carbohydrate metabolism. The hypolipidemic effects of the fibrate drugs and the antidiabetic effects of the glitazone drugs in humans are due to activation of the α (NR1C1) and γ (NR1C3) subtypes, respectively. By contrast, the therapeutic potential of the δ (NR1C2) subtype is unknown, due in part to the lack of selective ligands. We have used combinatorial chemistry and structure-based drug design to develop a potent and subtype-selective PPARδ agonist, GW501516. In macrophages, fibroblasts, and intestinal cells, GW501516 increases expression of the reverse cholesterol transporter ATP-binding cassette A1 and induces apolipoprotein A1-specific cholesterol efflux. When dosed to insulin-resistant middle-aged obese rhesus monkeys, GW501516 causes a dramatic dose-dependent rise in serum high density lipoprotein cholesterol while lowering the levels of small-dense low density lipoprotein, fasting triglycerides, and fasting insulin. Our results suggest that PPARδ agonists may be effective drugs to increase reverse cholesterol transport and decrease cardiovascular disease associated with the metabolic syndrome X.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch proteins function as receptors for membrane-bound ligands (Jagged and Delta-like) to regulate cell-fate determination. We have investigated the role of Notch signaling in embryonic endothelium of the mouse by expressing an activated form of the Notch4 protein in vasculature under the regulation of the Flk1 (VEGFR) locus. Expression of activated Notch4 results in a growth and developmental delay and embryonic lethality at about 10 days postcoitum. The extent of the developing vasculature in mutant embryos was restricted, fewer small vessels were seen, and vascular networks were disorganized. The brain periphery of mutant embryos contained large dilated vessels with evidence of compromised vessel-wall integrity and large areas of necrosis; yolk-sac vasculature was abnormal. Expression of an activated form of Notch4 in embryonic vasculature leads to abnormal vessel structure and patterning, implicating the Notch pathway in phases of vascular development associated with vessel patterning and remodeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How receptors catalyze exchange of GTP for GDP bound to the Gα subunit of trimeric G proteins is not known. One proposal is that the receptor uses the G protein's βγ heterodimer as a lever, tilting it to pull open the guanine nucleotide binding pocket of Gα. To test this possibility, we designed a mutant Gα that would bind to βγ in the tilted conformation. To do so, we excised a helical turn (four residues) from the N-terminal region of αs, the α subunit of GS, the stimulatory regulator of adenylyl cyclase. In the presence, but not in the absence, of transiently expressed β1 and γ2, this mutant (αsΔ), markedly stimulated cAMP accumulation. This effect depended on the ability of the coexpressed β protein to interact normally with the lip of the nucleotide binding pocket of αsΔ. We substituted alanine for an aspartate in β1 that binds to a lysine (K206) in the lip of the α subunit's nucleotide binding pocket. Coexpressed with αsΔ and γ2, this mutant, β1-D228A, elevated cAMP much less than did β1-wild type; it did bind to αsΔ normally, however, as indicated by its unimpaired ability to target αsΔ to the plasma membrane. We conclude that βγ can activate αs and that this effect probably involves both a tilt of βγ relative to αs and interaction of β with the lip of the nucleotide binding pocket. We speculate that receptors use a similar mechanism to activate trimeric G proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurotrophic factor deprivation causes apoptosis by a mechanism that requires macromolecular synthesis. This fact suggests that gene expression is necessary to achieve cell death. To identify mRNA that is expressed in apoptotic cells we used subtractive hybridization with cDNA prepared from neuronal pheochromocytoma cells. Monoamine oxidase (MAO) expression was increased in cells during nerve growth factor withdrawal-induced apoptosis. The increased apoptosis and induction of MAO was prevented by inhibition of the p38 mitogen-activated protein (MAP) kinase pathway. MAO may contribute to the apoptotic process because inhibition of MAO activity suppressed cell death. Together, these data indicate that MAO may be a target of pro-apoptotic signal transduction by the p38 MAP kinase pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The family of p21-activated protein kinases (PAKs) is composed of serine–threonine kinases whose activity is regulated by the small guanosine triphosphatases (GTPases) Rac and Cdc42. In mammalian cells, PAKs have been implicated in the regulation of mitogen-activated protein cascades, cellular morphological and cytoskeletal changes, neurite outgrowth, and cell apoptosis. Although the ability of Cdc42 and Rac GTPases to activate PAK is well established, relatively little is known about the negative regulation of PAK or the identity of PAK cellular targets. Here, we describe the identification and characterization of a human PAK-interacting protein, hPIP1. hPIP1 contains G protein β-like WD repeats and shares sequence homology with the essential fission yeast PAK regulator, Skb15, as well as the essential budding yeast protein, MAK11. Interaction of hPIP1 with PAK1 inhibits the Cdc42/Rac-stimulated kinase activity through the N-terminal regulatory domains of PAK1. Cotransfection of hPIP1 in mammalian cells inhibits PAK-mediated c-Jun N-terminal kinase and nuclear factor κ B signaling pathways. Our results demonstrate that hPIP1 is a negative regulator of PAK and PAK signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High affinity antibodies are generated in mice and humans by means of somatic hypermutation (SHM) of variable (V) regions of Ig genes. Mutations with rates of 10−5–10−3 per base pair per generation, about 106-fold above normal, are targeted primarily at V-region hot spots by unknown mechanisms. We have measured mRNA expression of DNA polymerases ι, η, and ζ by using cultured Burkitt's lymphoma (BL)2 cells. These cells exhibit 5–10-fold increases in heavy-chain V-region mutations targeted only predominantly to RGYW (R = A or G, Y = C or T, W = T or A) hot spots if costimulated with T cells and IgM crosslinking, the presumed in vivo requirements for SHM. An ∼4-fold increase pol ι mRNA occurs within 12 h when cocultured with T cells and surface IgM crosslinking. Induction of pols η and ζ occur with T cells, IgM crosslinking, or both stimuli. The fidelity of pol ι was measured at RGYW hot- and non-hot-spot sequences situated at nicks, gaps, and double-strand breaks. Pol ι formed T⋅G mispairs at a frequency of 10−2, consistent with SHM-generated C to T transitions, with a 3-fold increased error rate in hot- vs. non-hot-spot sequences for the single-nucleotide overhang. The T cell and IgM crosslinking-dependent induction of pol ι at 12 h may indicate an SHM “triggering” event has occurred. However, pols ι, η, and ζ are present under all conditions, suggesting that their presence is not sufficient to generate mutations because both T cell and IgM stimuli are required for SHM induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the mitogen-activated protein kinase kinase (MKK)/extracellular-activated protein kinase (ERK) pathway in mitotic Golgi disassembly is controversial, in part because Golgi-localized targets have not been identified. We observed that Golgi reassembly stacking protein 55 (GRASP55) was phosphorylated in mitotic cells and extracts, generating a mitosis-specific phospho-epitope recognized by the MPM2 mAb. This phosphorylation was prevented by mutation of ERK consensus sites in GRASP55. GRASP55 mitotic phosphorylation was significantly reduced, both in vitro and in vivo, by treatment with U0126, a potent and specific inhibitor of MKK and thus ERK activation. Furthermore, ERK2 directly phosphorylated GRASP55 on the same residues that generated the MPM2 phospho-epitope. These results are the first demonstration of GRASP55 mitotic phosphorylation and indicate that the MKK/ERK pathway directly phosphorylates the Golgi during mitosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the LEF-1/TCF family of transcription factors have been implicated in mediating a nuclear response to Wnt signals by association with β-catenin. Consistent with this view, mice carrying mutations in either the Wnt3a gene or in both transcription factor genes Lef1 and Tcf1 were previously found to show a similar defect in the formation of paraxial mesoderm in the gastrulating mouse embryo. In addition, mutations in the Brachyury gene, a direct transcriptional target of LEF-1, were shown to result in mesodermal defects. However, direct evidence for the role of LEF-1 and Brachyury in Wnt3a signaling has been limiting. In this study, we genetically examine the function of LEF-1 in the regulation of Brachyury expression and in signaling by Wnt3a. Analysis of the expression of Brachyury in Lef1−/−Tcf1−/− mice and studies of Brachyury:lacZ transgenes containing wild type or mutated LEF-1 binding sites indicate that Lef1 is dispensable for the initiation, but is required for the maintenance of Brachyury expression. We also show that the expression of an activated form of LEF-1, containing the β-catenin activation domain fused to the amino terminus of LEF-1, can rescue a Wnt3a mutation. Together, these data provide genetic evidence that Lef1 mediates the Wnt3a signal and regulates the stable maintenance of Brachyury expression during gastrulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor alpha (TNF-alpha) is well-characterized for its necrotic action against tumor cells; however, it has been increasingly associated with an apoptosis-inducing potential on target cells. While the signaling events and the actual cytolytic mechanism(s) for both TNF-alpha-induced necrosis and apoptosis remain to be fully elucidated, we report here on (i) the ability of TNF-alpha to induce apoptosis in the promonocytic U937 cells, (ii) the discovery of a cross-talk between the TNF-alpha and the interferon signaling pathways, and (iii) the pivotal role of interferon-inducible, double-stranded RNA-activated protein kinase (PKR) in the induction of apoptosis by TNF-alpha. Our data from microscopy studies, trypan blue exclusion staining, and apoptotic DNA ladder electrophoresis revealed that a subclone derived from U937 and carrying a PKR antisense expression vector was resistant to TNF-alpha-induced apoptosis. Further, TNF-alpha initiated a generalized RNA degradation process in which the participation of PKR was required. Finally, the PKR gene is a candidate "death gene" since overexpression of this gene could bring about apoptosis in U937 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitogenic and stres signals results in the activation of extracellular signal-regulated kinases (ERKs) and stress-activated protein kinase/c-Jun N-terminal kinases (SAPK/JNKs), respectively, which are two subgroups of the mitogen-activated protein kinases. A nuclear target of mitogen-activated protein (MAP) kinases is the ternary complex factor Elk-1, which underlies its involvement in the regulation of c-fos gene expression by mitogenic and stress signals. A second ternary complex factor, Sap1a, is coexpressed with Elk-1 in several cell types and shares attributes of Elk-1, the significance of which is not clear. Here we show that Sap1a is phosphorylated efficiently by ERKs but not by SAPK/JNKs. Serum response factor-dependent ternary complex formation by Sap1a is stimulated by ERK phosphorylation but not by SAPK/JNKs. Moreover, Sap1a-mediated transcription is activated by mitogenic signals but not by cell stress. These results suggest that Sap1a and Elk-1 have distinct physiological functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

JAK2, a member of the Janus kinase superfamily was found to interact functionally with Raf-1, a central component of the ras/mitogen-activated protein kinase signal transduction pathway. Interferon-gamma and several other cytokines that are known to activate JAK2 kinase were also found to stimulate Raf-1 kinase activity toward MEK-1 in mammalian cells. In the baculovirus coexpression system, Raf-1 was activated by JAK2 in the presence of p21ras. Under these conditions, a ternary complex of p21ras, JAK2, and Raf-1 was observed. In contrast, in the absence of p21ras, coexpression of JAK2 and Raf-1 resulted in an overall decrease in the Raf-1 kinase activity. In addition, JAK2 phosphorylated Raf-1 at sites different from those phosphorylated by pp60v-src. In mammalian cells treated with either erythropoietin or interferon-gamma, a small fraction of Raf-1 coimmunoprecipitated with JAK2 in lysates of cells in which JAK2 was activated as judged by its state of tyrosine phosphorylation. Taken together, these data suggest that JAK2 and p21ras cooperate to activate Raf-1.