98 resultados para sperm antibody
Resumo:
Recruitment of antigen-specific tumor-infiltrating lymphocytes (TILs) is a major goal for immunotherapy of malignant tumours. We now describe that T-cell-activating superantigens targeted to a tumor by monoclonal antibodies induced large numbers of pseudospecific TILs and eradication of micrometastases. As a model for tumor micrometastases, syngeneic B16 melanoma cells transfected with the human colon carcinoma antigen C215 were injected intravenously into C57BL/6 mice and therapy with an anti-C215 Fab fragment-staphylococcal enterotoxin A (C215Fab-SEA) fusion protein reacting with the C215 antigen was initiated when visible lung metastases were established. More than 90% reduction of the number of lung metastases was observed when mice carrying 5-day-old established lung metastases were treated with C215Fab-SEA. The antitumor effect of C215Fab-SEA was shown to be T-cell-dependent since no therapeutic effect was seen in T-cell-deficient nude mice. Depletion of T-cell subsets by injection of monoclonal antibody demonstrated that CD8+ cells were the most prominent effector cells although some contribution from CD4+ cells was also noted. C215Fab-SEA treatment induced massive tumor infiltration of CD4+ and CD8+ T cells, while only scattered T cells were observed in untreated tumors. SEA treatment alone induced a slight general inflammatory response in the lung parenchyme, but no specific accumulation of T cells was seen in the tumor. TILs induced by C215Fab-SEA were mainly CD8+ but a substantial number of CD4+ cells were also present. Immunohistochemical analysis showed strong production of the tumoricidal cytokines tumor necrosis factor alpha and interferon gamma in the tumor. Thus, the C215Fab-SEA fusion protein targets effector T lymphocytes to established tumors in vivo and provokes a strong local antitumor immune response.
Resumo:
Activated components of the complement system are potent mediators of inflammation that may play an important role in numerous disease states. For example, they have been implicated in the pathogenesis of inflammatory joint diseases including rheumatoid arthritis (RA). To target complement activation in immune-mediated joint inflammation, we have utilized monoclonal antibodies (mAbs) that inhibit the complement cascade at C5, blocking the generation of the major chemotactic and proinflammatory factors C5a and C5b-9. In this study, we demonstrate the efficacy of a mAb specific for murine C5 in the treatment of collagen-induced arthritis, an animal model for RA. We show that systemic administration of the anti-C5 mAb effectively inhibits terminal complement activation in vivo and prevents the onset of arthritis in immunized animals. Most important, anti-C5 mAb treatment is also highly effective in ameliorating established disease. These results demonstrate a critical role for activated terminal complement components not only in the induction but also in the progression of collagen-induced arthritis and suggest that C5 may be an attractive therapeutic target in RA.
Resumo:
We describe a method to facilitate radioimaging with technetium-99m (99mTc) by genetic incorporation of a 99mTc chelation site in recombinant single-chain Fv (sFv) antibody proteins. This method relies on fusion of the sFv C terminus with a Gly4Cys peptide that specifically coordinates 99mTc. By using analogues of the 26-10 anti-digoxin sFv as our primary model, we find that addition of the chelate peptide, to form 26-10-1 sFv', does not alter the antigen-binding affinity of sFv. We have demonstrated nearly quantitative chelation of 0.5-50 mCi of 99mTc per mg of 26-10-1 sFv' (1 Ci = 37 GBq). These 99mTc-labeled sFv' complexes are highly stable to challenge with saline buffers, plasma, or diethylenetriaminepentaacetic acid. We find that the 99mTc-labeled 741F8-1 sFv', specific for the c-erbB-2 tumor-associated antigen, is effective in imaging human ovarian carcinoma in a scid mouse tumor xenograft model. This fusion chelate methodology should be applicable to diagnostic imaging with 99mTc and radioimmunotherapy with 186Re or 188Re, and its use could extend beyond the sFv' to other engineered antibodies, recombinant proteins, and synthetic peptides.
Resumo:
Construction of a bispecific single-chain antibody derivative is described that consists of two different single-chain Fv fragments joined through a Gly-Ser linker. One specificity of the two Fv fragments is directed against the CD3 antigen of human T cells and the other is directed against the epithelial 17-1A antigen; the latter had been found in a clinical trial to be a suitable target for antibody therapy of minimal residual colorectal cancer. The construct could be expressed in CHO cells as a fully functional protein, while its periplasmic expression in Escherichia coli resulted in a nonfunctional protein only. The antigen-binding properties of the bispecific single-chain antibody are indistinguishable from those of the corresponding univalent single-chain Fv fragments. By redirecting human peripheral T lymphocytes against 17-1A-positive tumor cells, the bispecific antibody proved to be highly cytotoxic at nanomolar concentrations as demonstrated by 51Cr release assay on various cell lines. The described bispecific construct has a molecular mass of 60 kDa and can be easily purified by its C-terminal histidine tail on a Ni-NTA chromatography column. As bispecific antibodies have already been shown to be effective in vivo in experimental tumor systems as well as in phase-one clinical trials, the small CD3/17-1A-bispecific antibody may be more efficacious than intact antibodies against minimal residual cancer cells.
Resumo:
Cytokines are important regulators of hematopoesis. Mutations in gamma c, which is a subunit shared by the receptors for interleukin (IL) 2, IL-4, and IL-7, have been causally associated with human X chromosome-linked severe combined immunodeficiency disease. This finding indicates a mandatory role for cytokine receptor signaling at one or more stages of lymphocyte development. To evaluate the cellular level at which gamma c is critical for lymphopoiesis, the effect of monoclonal antibodies to gamma c on the capacity of syngeneic bone marrow cells to reconstitute the hematopoietic compartment of lethally irradiated recipient mice was examined. We show that monoclonal antibody to gamma c blocked lymphocyte development at or before the appearance of pro-B cells and prior to or at the seeding of the thymus by precursor cells while erythromyeloid cell development was normal. These results suggest that one level of lymphocyte development that requires gamma c is a point in hematopoietic cell differentiation near the divergence of lymphopoiesis and erythromyelopoesis.
Resumo:
Recombinant antibodies capable of sequence-specific interactions with nucleic acids represent a class of DNA- and RNA-binding proteins with potential for broad application in basic research and medicine. We describe the rational design of a DNA-binding antibody, Fab-Ebox, by replacing a variable segment of the immunoglobulin heavy chain with a 17-amino acid domain derived from TFEB, a class B basic helix-loop-helix protein. DNA-binding activity was studied by electrophoretic mobility-shift assays in which Fab-Ebox was shown to form a specific complex with DNA containing the TFEB recognition motif (CACGTG). Similarities were found in the abilities of TFEB and Fab-Ebox to discriminate between oligodeoxyribonucleotides containing altered recognition sequences. Comparable interference of binding by methylation of cytosine residues indicated that Fab-Ebox and TFEB both contact DNA through interactions along the major groove of double-stranded DNA. The results of this study indicate that DNA-binding antibodies of high specificity can be developed by using the modular nature of both immunoglobulins and transcription factors.
Resumo:
Analysis of the reactivity of IgM with self-antigens in tissues by a quantitative immunoblotting technique showed striking invariance among newborns in the human and in the mouse. The self-reactive repertoire of IgM of adults was also markedly conserved; it comprised most anti-self reactivities that prevailed among neonates. Multivariate analysis confirmed the homogeneity of IgM repertoires of neonates toward self- and non-self-antigens. Multivariate analysis discriminated between newborn and adult repertoires for reactivity with two of five sources of self-proteins and with non-self-antigens. Our observations support the concept that naturally activated B lymphocytes are selected early in development and throughout life for reactivity with a restricted set of self-antigens.
Resumo:
Peripheral blood leukocytes incubated with a semisynthetic phage antibody library and fluorochrome-labeled CD3 and CD20 antibodies were used to isolate human single-chain Fv antibodies specific for subsets of blood leukocytes by flow cytometry. Isolated phage antibodies showed exclusive binding to the subpopulation used for selection or displayed additional binding to a restricted population of other cells in the mixture. At least two phage antibodies appeared to display hitherto-unknown staining patterns of B-lineage cells. This approach provides a subtractive procedure to rapidly obtain human antibodies against known and novel surface antigens in their native configuration, expressed on phenotypically defined subpopulations of cells. This approach does not depend on immunization procedures or the necessity to repeatedly construct phage antibody libraries.