102 resultados para ionotropic receptor agonist


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 6-hr continuous infusion of 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenos ine (CGS21680), a selective A2a-adenosine agonist, into the subarachnoid space underlying the ventral surface region of the rostral basal forebrain, which has been defined as the prostaglandin (PG) D2-sensitive sleep-promoting zone, at rates of 0.02, 0.2, 2.0, and 12 pmol/min increased slow-wave sleep (SWS) and paradoxical sleep (PS) in a dose-dependent manner up to 183% and 202% of their respective baseline levels. The increments produced by the infusion of CGS21680 at 0.2 and 2.0 pmol/min were totally diminished when the rats had been pretreated with an i.p. injection of (E)-1,3-dipropyl-7-methyl-8-(3,4-dimethoxystyryl)xanthine (KF17837; 30 mg/kg of body weight), a selective A2-adenosine antagonist. In contrast, the infusion of N6-cyclohexyladenosine (CHA), a selective A1-adenosine agonist, at 2 pmol/min significantly suppressed SWS before causing an increase in SWS, and a decrease in PS was also markedly visible. Essentially the same effects of CGS21680 and CHA were observed when these compounds were administered to the parenchymal region of the rostral basal forebrain through chronically implanted microdialysis probes. Thus, we clearly showed that stimulation of A2a-adenosine receptors in the rostral basal forebrain promotes SWS and PS. Furthermore, i.p. injections of KF17837 at 30 and 100 mg/kg of body weight dose-dependently attenuated the magnitude of the SWS increase produced by the infusion of PGD2 into the subarachnoid space of the sleep-promoting zone, thus indicating that the A2a-adenosine receptors are crucial in the sleep-promoting process triggered by PGD2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using RAR type (alpha, beta, or gamma)-specific synthetic retinoids and a pan-retinoic X receptor (RXR)-specific ligand, we have investigated the contribution of RARs and RXRs in the activation of RA target genes and the differentiation of embryonal carcinoma cells. We demonstrate cell-type- and promoter context-dependent functional redundancies that differ between the three RAR types for mediating the induction of RARbeta2 and Hoxa-1 in wild-type, RARgamma-/- and RARalpha-/- F9 cells and in P19 cells. The extent of redundancy between RARs is further modulated by the synergistic activation of RXRs with a pan-RXR agonist. We also demonstrate that the expression of RARbeta2 is auto-inducible in RARgamma-/- but not in wild-type F9 cells, indicating that the functional redundancies observed between RARs in gene disruption studies can be artefactually generated. Thus, even though all three RARs can functionally substitute each other for inducing the expression of RA target genes and cell differentiation, one RAR can cell-specifically override the activity of the other RARs. Interestingly, only RARgamma can mediate the retinoic acid-induced differentiation of wild-type F9 cells, whereas the differentiation of P19 cells can be mediated by either RARalpha or RARgamma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly fluorescent mutant form of the green fluorescent protein (GFP) has been fused to the rat glucocorticoid receptor (GR). When GFP-GR is expressed in living mouse cells, it is competent for normal transactivation of the GR-responsive mouse mammary tumor virus promoter. The unliganded GFP-GR resides in the cytoplasm and translocates to the nucleus in a hormone-dependent manner with ligand specificity similar to that of the native GR receptor. Due to the resistance of the mutant GFP to photobleaching, the translocation process can be studied by time-lapse video microscopy. Confocal laser scanning microscopy showed nuclear accumulation in a discrete series of foci, excluding nucleoli. Complete receptor translocation is induced with RU486 (a ligand with little agonist activity), although concentration into nuclear foci is not observed. This reproducible pattern of transactivation-competent GR reveals a previously undescribed intranuclear architecture of GR target sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionotropic glutamate receptors, neurotransmitter-activated ion channels that mediate excitatory synaptic transmission in the central nervous system, are oligomeric membrane proteins of unknown subunit stoichiometry. To determine the subunit stoichiometry we have used a functional assay based on the blockade of two alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor subunit 1 (GluR1) mutant subunits selectively engineered to exhibit differential sensitivity to the open channel blockers phencyclidine and dizolcipine (MK-801). Coinjection into amphibian oocytes of weakly sensitive with highly sensitive subunit complementary RNAs produces functional heteromeric channels with mixed blocker sensitivities. Increasing the fraction of the highly sensitive subunit augmented the proportion of drug-sensitive receptors. Analysis of the data using a model based on random aggregation of receptor subunits allowed us to determine a pentameric stoichiometry for GluR1. This finding supports the view that a pentameric subunit organization underlies the structure of the neuronal ionotropic glutamate receptor gene family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stimulatory guanine nucleotide binding protein (Gs)-coupled receptors activated by luteinizing hormone, vasopressin, and the catecholamine isoproterenol (luteinizing hormone receptor, type 2 vasopressin receptor, and types 1 and 2 beta-adrenergic receptors) and the Gi-coupled M2 muscarinic receptor (M2R) were expressed transiently in COS cells, alone and in combination with Gbeta gamma dimers, their corresponding Galphas (Galpha(s), or Galpha(i3)) and either Galpha(q) or Galpha(16). Phospholipase C (PLC) activity, assessed by inositol phosphate production from preincorporated myo[3H]inositol, was then determined to gain insight into differential coupling preferences among receptors and G proteins. The following were observed: (i) All receptors tested were able to stimulate PLC activity in response to agonist occupation. The effect of the M2R was pertussis toxin sensitive. (ii) While, as expected, expression of Galpha(q) facilitated an agonist-induced activation of PLC that varied widely from receptor to receptor (400% with type 2 vasopressin receptor and only 30% with M2R), expression of Galpha(16) facilitated about equally well the activation of PLC by any of the tested receptors and thus showed little if any discrimination for one receptor over another. (iii) Gbeta gamma elevated basal (agonist independent) PLC activity between 2- and 4-fold, confirming the proven ability of Gbeta gamma to stimulate PLCbeta. (iv) Activation of expressed receptors by their respective ligands in cells coexpressing excess Gbeta gamma elicited agonist stimulated PLC activities, which, in the case of the M2R, was not blocked by pertussis toxin (PTX), suggesting mediation by a PTX-insensitive PLC-stimulating Galpha subunit, presumably, but not necessarily, of the Gq family. (v) The effects of Gbeta gamma and the PTX-insensitive Galpha elicited by M2R were synergistic, suggesting the possibility that one or more forms of PLC are under conditional or dual regulation of G protein subunits such that stimulation by one sensitizes to the stimulation by the other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The G-protein-coupled metabotropic glutamate receptor mGluR1 alpha and the ionotropic glutamate receptor GluR6 were examined for posttranslational palmitoylation. Recombinant receptors were expressed in baculovirus-infected insect cells or in human embryonic kidney cells and were metabolically labeled with [3H]palmitic acid. The metabotropic mGluR1 alpha receptor was not labeled whereas the GluR6 kainate receptor was labeled after incubation with [3H]palmitate. The [3H]palmitate labeling of GluR6 was eliminated by treatment with hydroxylamine, indicating that the labeling was due to palmitoylation at a cysteine residue via a thioester bond. Site-directed mutagenesis was used to demonstrate that palmitoylation of GluR6 occurs at two cysteine residues, C827 and C840, located in the carboxyl-terminal domain of the molecule. A comparison of the electrophysiological properties of the wild-type and unpalmitoylated mutant receptor (C827A, C840A) showed that the kainate-gated currents produced by the unpalmitoylated mutant receptor were indistinguishable from those of the wild-type GluR6. The unpalmitoylated mutant was a better substrate for protein kinase C than the wild-type GluR6 receptor. These data indicate that palmitoylation may not modulate kainate channel function directly but instead affect function indirectly by regulating the phosphorylation state of the receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opioid receptors are members of the guanine nucleotide binding protein (G protein)-coupled receptor family. Three types of opioid receptors have been cloned and characterized and are referred to as the delta, kappa and mu types. Analysis of receptor chimeras and site-directed mutant receptors has provided a great deal of information about functionally important amino acid side chains that constitute the ligand-binding domains and G-protein-coupling domains of G-protein-coupled receptors. We have constructed delta/mu opioid receptor chimeras that were express in human embryonic kidney 293 cells in order to define receptor domains that are responsible for receptor type selectivity. All chimeric receptors and wild-type delta and mu opioid receptors displayed high-affinity binding of etorphine (an agonist), naloxone (an antagonist), and bremazocine (a mixed agonist/antagonist). In contrast, chimeras that lacked the putative first extracellular loop of the mu receptor did not bind the mu-selective peptide [D-Ala2,MePhe4,Gly5-ol]enkephalin (DAMGO). Chimeras that lacked the putative third extracellular loop of the delta receptor did not bind the delta-selective peptide, [D-Ser2,D-Leu5]enkephalin-Thr (DSLET). Point mutations in the putative third extracellular loop of the wild-type delta receptor that converted vicinal arginine residues to glutamine abolished DSLET binding while not affecting bremazocine, etorphine, and naltrindole binding. We conclude that amino acids in the putative first extracellular loop of the mu receptor are critical for high-affinity DAMGO binding and that arginine residues in the putative third extracellular loop of the delta receptor are important for high-affinity DSLET binding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionotropic receptors for gamma-aminobutyric acid (GABA) are important to inhibitory neurotransmission in the mammalian retina, mediating GABAA and GABAC responses. In many species, these responses are blocked by the convulsant picrotoxinin (PTX), although the mechanism of block is not fully understood. In contrast, GABAC responses in the rat retina are extremely resistant to PTX. We hypothesized that this difference could be explained by molecular characterization of the receptors underlying the GABAC response. Here we report the cloning of two rat GABA receptor subunits, designated r rho 1 and r rho 2 after their previously identified human homologues. When coexpressed in Xenopus oocytes, r rho 1/r rho 2 heteromeric receptors mimicked PTX-resistant GABAC responses of the rat retina. PTX resistance is apparently conferred in native heteromeric receptors by r rho 2 subunits since homomeric r rho 1 receptors were sensitive to PTX; r rho 2 subunits alone were unable to form functional homomeric receptors. Site-directed mutagenesis confirmed that a single amino acid residue in the second membrane-spanning region (a methionine in r rho 2 in place of a threonine in r rho 1) is the predominant determinant of PTX resistance in the rat receptor. This study reveals not only the molecular mechanism underlying PTX blockade of GABA receptors but also the heteromeric nature of native receptors in the rat retina that underlie the PTX-resistant GABAC response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ryanodine receptor-like Ca2+ channel (RyRLC) is responsible for Ca2+ wave propagation and Ca2+ oscillations in certain nonmuscle cells by a Ca(2+)-induced Ca2+ release (CICR) mechanism. Cyclic ADP-ribose (cADPR), an enzymatic product derived from NAD+, is the only known endogenous metabolite that acts as an agonist on the RyRLC. However, the mode of action of cADPR is not clear. We have identified calmodulin as a functional mediator of cADPR-triggered CICR through the RyRLC in sea urchin eggs. cADPR-induced Ca2+ release consisted of two phases, an initial rapid release phase and a subsequent slower release. The second phase was selectively potentiated by calmodulin which, in turn, was activated by Ca2+ released during the initial phase. Caffeine enhanced the action of calmodulin. Calmodulin did not play a role in inositol 1,4,5-trisphosphate-induced Ca2+ release. These findings offer insights into the multiple pathways that regulate intracellular Ca2+ signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mast cells are multifunctional bone marrow-derived cells found in mucosal and connective tissues and in the nervous system, where they play important roles in tissue inflammation and in neuroimmune interactions. Very little is known about endogenous molecules and mechanisms capable of modulating mast cell activation. Palmitoylethanolamide, found in peripheral tissues, has been proposed to behave as a local autacoid capable of downregulating mast cell activation and inflammation. A cognate N-acylamide, anandamide, the ethanolamide of arachidonic acid, occurs in brain and is a candidate endogenous agonist for the central cannabinoid receptor (CB1). As a second cannabinoid receptor (CB2) has been found in peripheral tissues, the possible presence of CB2 receptors on mast cells and their interaction with N-acylamides was investigated. Here we report that mast cells express both the gene and a functional CB2 receptor protein with negative regulatory effects on mast cell activation. Although both palmitoylethanolamide and anandamide bind to the CB2 receptor, only the former downmodulates mast cell activation in vitro. Further, the functional effect of palmitoylethanolamide, as well as that of the active cannabinoids, was efficiently antagonized by anandamide. The results suggest that (i) peripheral cannabinoid CB2 receptors control, upon agonist binding, mast cell activation and therefore inflammation; (ii) palmitoylethanolamide, unlike anandamide, behaves as an endogenous agonist for the CB2 receptor on mast cells; (iii) modulatory activities on mast cells exerted by the naturally occurring molecule strengthen a proposed autacoid local inflammation antagonism (ALIA) mechanism; and (iv) palmitoylethanolamide and its derivatives may provide antiinflammatory therapeutic strategies specifically targeted to mast cells ("ALIAmides").

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agonists of the dopamine D1/D5 receptors that are positively coupled to adenylyl cyclase specifically induce a slowly developing long-lasting potentiation of the field excitatory postsynaptic potential in the CA1 region of the hippocampus that lasts for > 6 hr. This potentiation is blocked by the specific D1/D5 receptor antagonist SCH 23390 and is occluded by the potentiation induced by cAMP agonists. An agonist of the D2 receptor, which is negatively coupled to adenylyl cyclase through G alpha i, did not induce potentiation. Although this slow D1/D5 agonist-induced potentiation is partially independent of N-methyl-D-aspartate receptors, it seems to share some steps with and is occluded by the late phase of long-term potentiation (LTP) produced by three repeated trains of nerve stimuli applied to the Schaffer collateral pathway. Similarly, the D1/D5 antagonist SCH 23390 attenuates the late phase of the LTP induced by repeated trains, and the D1/D5 agonist-induced potentiation is blocked by the protein synthesis inhibitor anisomycin. These results suggest that the D1/D5 receptor may be involved in the late, protein synthesis-dependent component of LTP in the hippocampal CA1 region, either as an ancillary component or as a mediator directly contributing to the late phase.