103 resultados para human growth hormone


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the three-dimensional structure of osteogenic protein 1 (OP-1, also known as bone morphogenetic protein 7) to 2.8-A resolution. OP-1 is a member of the transforming growth factor beta (TGF-beta) superfamily of proteins and is able to induce new bone formation in vivo. Members of this superfamily share sequence similarity in their C-terminal regions and are implicated in embryonic development and adult tissue repair. Our crystal structure makes possible the structural comparison between two members of the TGF-beta superfamily. We find that although there is limited sequence identity between OP-1 and TGF-beta 2, they share a common polypeptide fold. These results establish a basis for proposing the OP-1/TGF-beta 2 fold as the primary structural motif for the TGF-beta superfamily as a whole. Detailed comparison of the OP-1 and TGF-beta 2 structures has revealed striking differences that provide insights into how these growth factors interact with their receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have studied the neuropathological characteristics of the brain of rats receiving daily intracerebroventricular administration of freshly dissolved human immunodeficiency virus type 1 recombinant protein gp120 (100 ng per rat per day) given for up to 14 days. Histological examination of serial brain sections revealed no apparent gross damage to the cortex or hippocampus, nor did cell counting yield significant neuronal cell loss. However, the viral protein caused after 7 and 14 days of treatment DNA fragmentation in 10% of brain cortical neurons. Interestingly, reduced neuronal nitric oxide synthase (NOS) expression along with significant increases in nerve growth factor (NGF) were observed in the hippocampus, where gp120 did not cause neuronal damage. No changes in NGF and NOS expression were seen in the cortex, where cell death is likely to be of the apoptotic type. The present data demonstrate that gp120-induced cortical cell death is associated with the lack of increase of NGF in the cerebral cortex and suggest that the latter may be important for the expression of neuropathology in the rat brain. By contrast, enhanced levels of NGF may prevent or delay neuronal death in the hippocampus, where reduced NOS expression may be a reflection of a subcellular insult inflicted by the viral protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thyrotropin is the primary hormone that, via one heptahelical receptor, regulates thyroid cell functions such as secretion, specific gene expression, and growth. In human thyroid, thyrotropin receptor activation leads to stimulation of the adenylyl cyclase and phospholipase C cascades. However, the G proteins involved in thyrotropin receptor action have been only partially defined. In membranes of human thyroid gland, we immunologically identified alpha subunits of the G proteins Gs short, Gs long, Gi1, Gi2, Gi3, G(o) (Go2 and another form of Go, presumably Go1), Gq, G11, G12, and G13. Activation of the thyrotropin (TSH) receptor by bovine TSH led to increased incorporation of the photoreactive GTP analogue [alpha-32P]GTP azidoanilide into immunoprecipitated alpha subunits of all G proteins detected in thyroid membranes. This effect was receptor-dependent and not due to direct G protein stimulation because it was mimicked by TSH receptor-stimulating antibodies of patients suffering from Grave disease and was abolished by a receptor-blocking antiserum from a patient with autoimmune hypothyroidism. The TSH-induced activation of individual G proteins occurred with EC50 values of 5-50 milliunits/ml, indicating that the activated TSH receptor coupled with similar potency to different G proteins. When human thyroid slices were pretreated with pertussis toxin, the TSH receptor-mediated accumulation of cAMP increased by approximately 35% with TSH at 1 milliunits/ml, indicating that the TSH receptor coupled to Gs and G(i). Taken together, these findings show that, at least in human thyroid membranes, in which the protein is expressed at its physiological levels, the TSH receptor resembles a naturally occurring example of a general G protein-activating receptor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Expression of human keratinocyte growth factor (KGF/FGF-7) was directed to epithelial cells of the developing embryonic lung of transgenic mice disrupting normal pulmonary morphogenesis during the pseudoglandular stage of development. By embryonic day 15.5(E15.5), lungs of transgenic surfactant protein C (SP-C)-KGF mice resembled those of humans with pulmonary cystadenoma. Lungs were cystic, filling the thoracic cavity, and were composed of numerous dilated saccules lined with glycogen-containing columnar epithelial cells. The normal distribution of SP-C proprotein in the distal regions of respiratory tubules was disrupted. Columnar epithelial cells lining the papillary structures stained variably and weakly for this distal respiratory cell marker. Mesenchymal components were preserved in the transgenic mouse lungs, yet the architectural relationship of the epithelium to the mesenchyme was altered. SP-C-KGF transgenic mice failed to survive gestation to term, dying before E17.5. Culturing mouse fetal lung explants in the presence of recombinant human KGF also disrupted branching morphogenesis and resulted in similar cystic malformation of the lung. Thus, it appears that precise temporal and spatial expression of KGF is likely to play a crucial role in the control of branching morphogenesis during fetal lung development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Articular cartilage chondrocytes have the unique ability to elaborate large amounts of extracellular pyrophosphate (PPi), and transforming growth factor beta (TGF beta) appears singular among cartilage regulatory factors in stimulating PPi production. TGF beta caused a time and dose-dependent increase in intracellular and extracellular PPi in human articular chondrocyte cultures. TGF beta and interleukin 1 beta (IL-1 beta) antagonistically regulate certain chondrocyte functions. IL-1 beta profoundly inhibited basal and TGF beta-induced PPi elaboration. To address mechanisms involved with the regulation of PPi synthesis by IL-1 beta and TGF beta, we analyzed the activity of the PPi-generating enzyme NTP pyrophosphohydrolase (NTPPPH) and the PPi-hydrolyzing enzyme alkaline phosphatase. Human chondrocyte NTPPPH activity was largely attributable to plasma cell membrane glycoprotein 1, PC-1. Furthermore, TGF beta induced comparable increases in the activity of extracellular PPi, intracellular PPi, and cellular NTPPPH and in the levels of PC-1 protein and mRNA in chondrocytes as well as a decrease in alkaline phosphatase. All of these TGF beta-induced responses were completely blocked by IL-1 beta. Thus, IL-1 beta may be an important regulator of mineralization in chondrocytes by inhibiting TGF beta-induced PPi production and PC-1 expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Total glycans from the cell layer and the culture medium of human vascular smooth muscle cells (VSMC) that had been cultivated in the presence of platelet-derived growth factor (PDGF) were isolated and purified by gel filtration after Pronase and DNase digestion and alkaliborohydride treatment. Measurements of the content of neutral hexoses and uronic acids revealed that PDGF stimulates total glycan synthesis by proliferating VSMC in a linear fashion from 24 h to 72 h of incubation. In contrast, total glycan synthesis by human fibroblasts, epithelial cells, or endothelial cells was not affected by PDGF, indicating cell-type specificity. Chemical, biochemical, and enzymological characterization of the total glycans synthesized by VSMC showed that PDGF stimulates the secretion of a 340-kDa glycan molecule in a time-dependent manner from 24 h to 72 h. This molecule is highly acidic, shares a common structure with hyaluronic acid, and exhibits a potent antiproliferative activity on VSMC. These results suggest that VSMC in response to PDGF are capable of controlling their own growth and migration by the synthesis of a specific form of hyaluronic acid with antiproliferative potency, which may be involved in the regulation of the local inflammatory responses associated with atherosclerosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increased expression of wild-type p53 in response to DNA damage arrests cells late in the G1 stage of the cell cycle by stimulating the synthesis of inhibitors of cyclin-dependent kinases, such as p21/WAF1. To study the effects of p53 without the complication of DNA damage, we used tetracycline to regulate its expression in MDAH041 human fibroblasts that lack endogenous p53. When p53 is expressed at a level comparable to that induced by DNA damage in other cells, most MDAH041 cells arrested in G1, but a significant fraction also arrested in G2/M. Cells released from a mimosine block early in S phase stopped predominantly in G2/M in the presence of p53, confirming that p53 can mediate arrest at this stage, as well as in G1. In these cells, there was appreciable induction of p21/WAF1. MDAH041 cells arrested by tetracycline-regulated p53 for as long as 20 days resumed growth when the p53 level was lowered, in striking contrast to the irreversible arrest mediated by DNA damage. Therefore, irreversible arrest must involve processes other than or in addition to the interaction of p53-induced p21/WAF1 with G1 and G2 cyclin-dependent kinases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Drosophila the response to the hormone ecdysone is mediated in part by Ultraspiracle (USP) and ecdysone receptor (EcR), which are members of the nuclear receptor superfamily. Heterodimers of these proteins bind to ecdysone response elements (EcREs) and ecdysone to modulate transcription. Herein we describe Drosophila hormone receptor 38 (DHR38) and Bombyx hormone receptor 38 (BHR38), two insect homologues of rat nerve growth factor-induced protein B (NGFI-B). Although members of the NGFI-B family are thought to function exclusively as monomers, we show that DHR38 and BHR38 in fact interact strongly with USP and that this interaction is evolutionarily conserved. DHR38 can compete in vitro against EcR for dimerization with USP and consequently disrupt EcR-USP binding to an EcRE. Moreover, transfection experiments in Schneider cells show that DHR38 can affect ecdysone-dependent transcription. This suggests that DHR38 plays a role in the ecdysone response and that more generally NGFI-B type receptors may be able to function as heterodimers with retinoid X receptor type receptors in regulating transcription.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unlike most normal adult tissues, cyclic growth and tissue remodeling occur within the uterine endometrium throughout the reproductive years. The matrix metalloproteinases (MMPs), a family of structurally related enzymes that degrade specific components of the extracellular matrix are thought to be the physiologically relevant mediators of extracellular matrix composition and turnover. Our laboratory has identified MMPs of the stromelysin family in the cycling human endometrium, implicating these enzymes in mediating the extensive remodeling that occurs in this tissue. While the stromelysins are expressed in vivo during proliferation-associated remodeling and menstruation-associated endometrial breakdown, none of the stromelysins are expressed during the progesterone-dominated secretory phase of the cycle. Our in vitro studies of isolated cell types have confirmed progesterone suppression of stromal MMPs, but a stromal-derived paracrine factor was found necessary for suppression of the epithelial-specific MMP matrilysin. In this report, we demonstrate that transforming growth factor beta (TGF-beta) is produced by endometrial stroma in response to progesterone and can suppress expression of epithelial matrilysin independent of progesterone. Additionally, we find that an antibody directed against the mammalian isoforms of TGF-beta abolishes progesterone suppression of matrilysin in stromal-epithelial cocultures, implicating TGF-beta as the principal mediator of matrilysin suppression in the human endometrium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

c-Src is a nontransforming tyrosine kinase that participates in signaling events mediated by a variety of polypeptide growth factor receptors, including the epidermal growth factor receptor (EGFR). Overexpression and continual ligand stimulation of the EGFR results in morphological transformation of cells in vitro and tumor development in vivo. Elevated levels of c-Src and the EGFR are found in a variety of human malignancies, raising the question of whether c-Src can functionally cooperate with the EGFR during tumorigenesis. To address this issue, we generated c-Src/EGFR double overexpressors and compared their proliferative and biochemical characteristics to those of single overexpressors and control cells. We found that in cells expressing high levels of receptor, c-Src potentiated DNA synthesis, growth in soft agar, and tumor formation in nude mice. Growth potentiation was associated with the formation of a heterocomplex between c-Src and activated EGFR, the appearance of a distinct tyrosyl phosphorylation on the receptor, and an enhancement of receptor substrate phosphorylation. These findings indicate that c-Src is capable of potentiating receptor-mediated tumorigenesis and suggest that synergism between c-Src and the EGFR may contribute to a more aggressive phenotype in multiple human tumors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

mac25, the subject of this report, was selected by the differential display of mRNA method in a search for genes overexpressed in senescent human mammary epithelial cells. mac25 had previously been cloned as a discrete gene, preferentially expressed in normal, leptomeningial cells compared with meningioma tumors. mac25 is another member of the insulin growth factor-binding protein (IGFBP) family. Insulin-like growth factors are potent mitogens for mammary epithelial cells, and the IGFBPs have been shown to modulate this mitogenic activity. We report here that mac25, unlike most IGFBPs, is down-regulated at the transcription level in mammary carcinoma cell lines, suggesting a tumor-suppressor role. The gene was mapped to chromosome 4q12. We found that mac25 accumulates in senescent cells and is up-regulated in normal, growing mammary epithelial cells by all-trans-retinoic acid or the synthetic retinoid fenretinide. These findings suggest that mac25 may be a downstream effector of retinoid chemoprevention in breast epithelial cells and that its tumor-suppressive role may involve a senescence pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the influence of interferons alpha, beta, and gamma (IFN-alpha, -beta, and -gamma) on the production of basic fibroblast growth factor (bFGF) by human renal carcinoma cells. The human renal carcinoma cell metastatic line SN12PM6 was established in culture from a lung metastasis and SN12PM6-resistant cells were selected in vitro for resistance to the antiproliferative effects of IFN-alpha or IFN-beta. IFN-alpha and IFN-beta, but not IFN-gamma, down-regulated the expression of bFGF at the mRNA and protein levels by a mechanism independent of their antiproliferative effects. Down-regulation of bFGF required a long exposure (> 4 days) of cells to low concentrations (> 10 units/ml) of IFN-alpha or IFN-beta. The withdrawal of IFN-alpha or IFN-beta from the medium permitted SN12PM6-resistant cells to resume production of bFGF. The incubation of human bladder, prostate, colon, and breast carcinoma cells with noncytostatic concentrations of IFN-alpha or IFN-beta also produced down-regulation of bFGF production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.