210 resultados para arabidopsis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of simultaneous environmental stresses on plants and how they respond to combined stresses compared with single stresses is largely unclear. By using a transgene (RD29A-LUC) consisting of the firefly luciferase coding sequence (LUC) driven by the stress-responsive RD29A promoter, we investigated the interactive effects of temperature, osmotic stress, and the phytohormone abscisic acid (ABA) in the regulation of gene expression in Arabidopsis seedlings. Results indicated that both positive and negative interactions exist among the studied stress factors in regulating gene expression. At a normal growth temperature (22°C), osmotic stress and ABA act synergistically to induce the transgene expression. Low temperature inhibits the response to osmotic stress or to combined treatment of osmotic stress and ABA, whereas low temperature and ABA treatments are additive in inducing transgene expression. Although high temperature alone does not activate the transgene, it significantly amplifies the effects of ABA and osmotic stress. The effect of multiple stresses in the regulation of RD29A-LUC expression in signal transduction mutants was also studied. The results are discussed in the context of cold and osmotic stress signal transduction pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wild-type Arabidopsis plants, the starch-deficient mutant TL46, and the near-starchless mutant TL25 were evaluated by noninvasive in situ methods for their capacity for net CO2 assimilation, true rates of photosynthetic O2 evolution (determined from chlorophyll fluorescence measurements of photosystem II), partitioning of photosynthate into sucrose and starch, and plant growth. Compared with wild-type plants, the starch mutants showed reduced photosynthetic capacity, with the largest reduction occurring in mutant TL25 subjected to high light and increased CO2 partial pressure. The extent of stimulation of CO2 assimilation by increasing CO2 or by reducing O2 partial pressure was significantly less for the starch mutants than for wild-type plants. Under high light and moderate to high levels of CO2, the rates of CO2 assimilation and O2 evolution and the percentage inhibition of photosynthesis by low O2 were higher for the wild type than for the mutants. The relative rates of 14CO2 incorporation into starch under high light and high CO2 followed the patterns of photosynthetic capacity, with TL46 showing 31% to 40% of the starch-labeling rates of the wild type and TL25 showing less than 14% incorporation. Overall, there were significant correlations between the rates of starch synthesis and CO2 assimilation and between the rates of starch synthesis and cumulative leaf area. These results indicate that leaf starch plays an important role as a transient reserve, the synthesis of which can ameliorate any potential reduction in photosynthesis caused by feedback regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The S-like ribonucleases (RNases) RNS1 and RNS2 of Arabidopsis are members of the widespread T2 ribonuclease family, whose members also include the S-RNases, involved in gametophytic self-incompatibility in plants. Both RNS1 and RNS2 mRNAs have been shown previously to be induced by inorganic phosphate (Pi) starvation. In our study we examined this regulation at the protein level and determined the effects of diminishing RNS1 and RNS2 expression using antisense techniques. The Pi-starvation control of RNS1 and RNS2 was confirmed using antibodies specific for each protein. These specific antibodies also demonstrated that RNS1 is secreted, whereas RNS2 is intracellular. By introducing antisense constructs, mRNA accumulation was inhibited by up to 90% for RNS1 and up to 65% for RNS2. These plants contained abnormally high levels of anthocyanins, the production of which is often associated with several forms of stress, including Pi starvation. This effect demonstrates that diminishing the amounts of either RNS1 or RNS2 leads to effects that cannot be compensated for by the actions of other RNases, even though Arabidopsis contains a large number of different RNase activities. These results, together with the differential localization of the proteins, imply that RNS1 and RNS2 have distinct functions in the plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AtCBR, a cDNA encoding NADH-cytochrome (Cyt) b5 reductase, and AtB5-A and AtB5-B, two cDNAs encoding Cyt b5, were isolated from Arabidopsis. The primary structure deduced from the AtCBR cDNA was 40% identical to those of the NADH-Cyt b5 reductases of yeast and mammals. A recombinant AtCBR protein prepared using a baculovirus system exhibited typical spectral properties of NADH-Cyt b5 reductase and was used to study its electron-transfer activity. The recombinant NADH-Cyt b5 reductase was functionally active and displayed strict specificity to NADH for the reduction of a recombinant Cyt b5 (AtB5-A), whereas no Cyt b5 reduction was observed when NADPH was used as the electron donor. Conversely, a recombinant NADPH-Cyt P450 reductase of Arabidopsis was able to reduce Cyt b5 with NADPH but not with NADH. To our knowledge, this is the first evidence in higher plants that both NADH-Cyt b5 reductase and NADPH-Cyt P450 reductase can reduce Cyt b5 and have clear specificities in terms of the electron donor, NADH or NADPH, respectively. This substrate specificity of the two reductases is discussed in relation to the NADH- and NADPH-dependent activities of microsomal fatty acid desaturases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arabidopsis has inducible responses for tolerance of O2 deficiency. Plants previously exposed to 5% O2 were more tolerant than the controls to hypoxic stress (0.1% O2 for 48 h) in both roots and shoots, but hypoxic acclimation did not improve tolerance to anoxia (0% O2). The acclimation of shoots was not dependent on the roots: increased shoot tolerance was observed when the roots of the plants were removed. An adh (alcohol dehydrogenase) null mutant did not show acclimation of the roots but retained the shoot survival response. Abscisic acid treatment also differentiated the root and shoot responses; pretreatment induced root survival in hypoxic stress conditions (0.1% O2) but did not induce any increase in the survival of shoots. Cycloheximide blocked both root and shoot acclimation, indicating that both acclimation mechanisms are dependent on protein synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously conducted sequence analysis of Arabidopsis thaliana (ecotype Columbia-0) reported an insertion of 270-kb mtDNA into the pericentric region on the short arm of chromosome 2. DNA fiber-based fluorescence in situ hybridization analyses reveal that the mtDNA insert is 618 ± 42 kb, ≈2.3 times greater than that determined by contig assembly and sequencing analysis. Portions of the mitochondrial genome previously believed to be absent were identified within the insert. Sections of the mtDNA are repeated throughout the insert. The cytological data illustrate that DNA contig assembly by using bacterial artificial chromosomes tends to produce a minimal clone path by skipping over duplicated regions, thereby resulting in sequencing errors. We demonstrate that fiber-fluorescence in situ hybridization is a powerful technique to analyze large repetitive regions in the higher eukaryotic genomes and is a valuable complement to ongoing large genome sequencing projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brassinosteroid-insensitive 1 (BRI1) of Arabidopsis thaliana encodes a cell surface receptor for brassinosteroids. Mutations in BRI1 severely affect plant growth and development. Activation tagging of a weak bri1 allele (bri1-5) resulted in the identification of a new locus, brs1-1D. BRS1 is predicted to encode a secreted carboxypeptidase. Whereas a brs1 loss-of-function allele has no obvious mutant phenotype, overexpression of BRS1 can suppress bri1 extracellular domain mutants. Genetic analyses showed that brassinosteroids and a functional BRI1 protein kinase domain are required for suppression. In addition, overexpressed BRS1 missense mutants, predicted to abolish BRS1 protease activity, failed to suppress bri1-5. Finally, the effects of BRS1 are selective: overexpression in either wild-type or two other receptor kinase mutants resulted in no phenotypic alterations. These results strongly suggest that BRS1 processes a protein involved in an early event in the BRI1 signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis thaliana AtHKT1 protein, a Na+/K+ transporter, is capable of mediating inward Na+ currents in Xenopus laevis oocytes and K+ uptake in Escherichia coli. HKT1 proteins are members of a superfamily of K+ transporters. These proteins have been proposed to contain eight transmembrane segments and four pore-forming regions arranged in a mode similar to that of a K+ channel tetramer. However, computer analysis of the AtHKT1 sequence identified eleven potential transmembrane segments. We have investigated the membrane topology of AtHKT1 with three different techniques. First, a gene fusion alkaline phosphatase study in E. coli clearly defined the topology of the N-terminal and middle region of AtHKT1, but the model for membrane folding of the C-terminal region had to be refined. Second, with a reticulocyte-lysate supplemented with dog-pancreas microsomes, we demonstrated that N-glycosylation occurs at position 429 of AtHKT1. An engineered unglycosylated protein variant, N429Q, mediated Na+ currents in X. laevis oocytes with the same characteristics as the wild-type protein, indicating that N-glycosylation is not essential for the functional expression and membrane targeting of AtHKT1. Five potential glycosylation sites were introduced into the N429Q. Their pattern of glycosylation supported the model based on the E. coli-alkaline phosphatase data. Third, immunocytochemical experiments with FLAG-tagged AtHKT1 in HEK293 cells revealed that the N and C termini of AtHKT1, and the regions containing residues 135–142 and 377–384, face the cytosol, whereas the region of residues 55–62 is exposed to the outside. Taken together, our results show that AtHKT1 contains eight transmembrane-spanning segments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fate of redundant genes resulting from genome duplication is poorly understood. Previous studies indicated that ribosomal RNA genes from one parental origin are epigenetically silenced during interspecific hybridization or polyploidization. Regulatory mechanisms for protein-coding genes in polyploid genomes are unknown, partly because of difficulty in studying expression patterns of homologous genes. Here we apply amplified fragment length polymorphism (AFLP)–cDNA display to perform a genome-wide screen for orthologous genes silenced in Arabidopsis suecica, an allotetraploid derived from Arabidopsis thaliana and Cardaminopsis arenosa. We identified ten genes that are silenced from either A. thaliana or C. arenosa origin in A. suecica and located in four of the five A. thaliana chromosomes. These genes represent a variety of RNA and predicted proteins including four transcription factors such as TCP3. The silenced genes in the vicinity of TCP3 are hypermethylated and reactivated by blocking DNA methylation, suggesting epigenetic regulation is involved in the expression of orthologous genes in polyploid genomes. Compared with classic genetic mutations, epigenetic regulation may be advantageous for selection and adaptation of polyploid species during evolution and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UV-A/blue light acts to regulate a number of physiological processes in higher plants. These include light-driven chloroplast movement and phototropism. The NPH1 gene of Arabidopsis encodes an autophosphorylating protein kinase that functions as a photoreceptor for phototropism in response to low-intensity blue light. However, nph1 mutants have been reported to exhibit normal phototropic curvature under high-intensity blue light, indicating the presence of an additional phototropic receptor. A likely candidate is the nph1 homologue, npl1, which has recently been shown to mediate the avoidance response of chloroplasts to high-intensity blue light in Arabidopsis. Here we demonstrate that npl1, like nph1, noncovalently binds the chromophore flavin mononucleotide (FMN) within two specialized PAS domains, termed LOV domains. Furthermore, when expressed in insect cells, npl1, like nph1, undergoes light-dependent autophosphorylation, indicating that npl1 also functions as a light receptor kinase. Consistent with this conclusion, we show that a nph1npl1 double mutant exhibits an impaired phototropic response under both low- and high-intensity blue light. Hence, npl1 functions as a second phototropic receptor under high fluence rate conditions and is, in part, functionally redundant to nph1. We also demonstrate that both chloroplast accumulation in response to low-intensity light and chloroplast avoidance movement in response to high-intensity light are lacking in the nph1npl1 double mutant. Our findings therefore indicate that nph1 and npl1 show partially overlapping functions in two different responses, phototropism and chloroplast relocation, in a fluence rate-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated the kinetics of the gravitropic response of the Arabidopsis mutant rgr1 (reduced root gravitropism). Although the rate of curvature in rgr1, which is allelic to axr4, was smaller than in the wild type (ecotype Wassilewskija), curvature was initiated in the same region of the root, the distal elongation zone. The time lag for the response was unaffected in the mutant; however, the gravitropic response of rgr1 contained a feature not found in the wild type: when roots growing along the surface of an agar plate were gravistimulated, there was often an upward curvature that initiated in the central elongation zone. Because this response was dependent on the tactile environment of the root, it most likely resulted from the superposition of the waving/coiling phenomenon onto the gravitropic response. We found that the frequency of the waving pattern and circumnutation, a cyclic endogenous pattern of root growth, was the same in rgr1 and in the wild type, so the waving/coiling phenomenon is likely governed by circumnutation patterns. The amplitudes of these oscillations may then be selectively amplified by tactile stimulation to provide a directional preference to the slanting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ascorbate peroxidases are important enzymes that detoxify hydrogen peroxide within the cytosol and chloroplasts of plant cells. To better understand their role in oxidative stress tolerance, the transcriptional regulation of the apx1 gene from Arabidopsis was studied. The apx1 gene was expressed in all tested organs of Arabidopsis; mRNA levels were low in roots, leaves, and stems and high in flowers. Steady-state mRNA levels in leaves or cell suspensions increased after treatment with methyl viologen, ethephon, high temperature, and illumination of etiolated seedlings. A putative heat-shock cis element found in the apx1 promoter was shown to be recognized by the tomato (Lycopersicon esculentum) heat-shock factor in vitro and to be responsible for the in vivo heat-shock induction of the gene. The heat-shock cis element also contributed partially to the induction of the gene by oxidative stress. By using in vivo dimethyl sulfate footprinting, we showed that proteins interacted with a G/C-rich element found in the apx1 promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the gibberellin (GA) biosynthesis pathway, 20-oxidase catalyzes the oxidation and elimination of carbon-20 to give rise to C19-GAs. All bioactive GAs are C19-GAs. We have overexpressed a cDNA encoding 20-oxidase isolated from Arabidopsis seedlings in transgenic Arabidopsis plants. These transgenic plants display a phenotype that may be attributed to the overproduction of GA. The phenotype includes a longer hypocotyl, lighter-green leaves, increased stem elongation, earlier flowering, and decreased seed dormancy. However, the fertility of the transgenic plants is not affected. Increased levels of endogenous GA1, GA9, and GA20 were detected in seedlings of the transgenic line examined. GA4, which is thought to be the predominantly active GA in Arabidopsis, was not present at increased levels in this line. These results suggest that the overexpression of this 20-oxidase increases the levels of some endogenous GAs in transgenic seedlings, which causes the GA-overproduction phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypocotyl of Arabidopsis is well suited for the analysis of cell elongation because it elongates without cell division. We have isolated a new class of recessive mutants, petit1 (pet1), which are defective in aspects of hypocotyl elongation. The short-hypocotyl phenotype of pet1 is caused by shortened cells. The cells of the elongation zone of the hypocotyl are often deformed. pet1 also shows defects in elongation of the roots, flower stalk, leaves, petals, pedicels, and siliques, and these defects cannot be repaired by the application of auxin, gibberellin, brassinolide, or an inhibitor of ethylene biosynthesis. The short-hypocotyl phenotype of pet1 is pronounced only in growth medium supplemented with sucrose, which has promotive effects on hypocotyl elongation. In pet1 this effect is much reduced, causing the sucrose-dependent short-hypocotyl phenotype of pet1. pet1 accumulates more soluble sugars than the wild type and also shows more intensive iodo-starch staining in the cotyledon and hypocotyl. These results indicate that PETIT1 is involved in a sugar-dependent elongation process that may include correct assembly of expanding cell wall architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We searched for new components that are involved in the positive regulation of nuclear gene expression by light by extending a screen for Arabidopsis cue (chlorophyll a/b-binding [CAB] protein-underexpressed) mutants (H.-M. Li, K. Culligan, R.A. Dixon, J. Chory [1995] Plant Cell 7: 1599–1610). cue mutants display reduced expression of the CAB3 gene, which encodes light-harvesting chlorophyll protein, the main chloroplast antenna. The new mutants can be divided into (a) phytochrome-deficient mutants (hy1 and phyB), (b) virescent or delayed-greening mutants (cue3, cue6, and cue8), and (c) uniformly pale mutants (cue4 and cue9). For each of the mutants, the reduction in CAB expression correlates with the visible phenotype, defective chloroplast development, and reduced abundance of the light-harvesting chlorophyll protein. Levels of protochlorophyllide oxidoreductase (POR) were reduced to varying degrees in etiolated mutant seedlings. In the dark, whereas the virescent mutants displayed reduced CAB expression and the lowest levels of POR protein, the other mutants expressed CAB and accumulated POR at near wild-type levels. All of the mutants, with the exception of cue6, were compromised in their ability to derepress CAB expression in response to phytochrome activation. Based on these results, we propose that the previously postulated plastid-derived signal is closely involved in the pathway through which phytochrome regulates the expression of nuclear genes encoding plastid proteins.