193 resultados para Transcription Factor 7-Like 2 Protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

General transcription factor SIII, a heterotrimer composed of 110-kDa (p110), 18-kDa (p18), and 15-kDa (p15) subunits, increases the catalytic rate of transcribing RNA polymerase II by suppressing transient pausing by polymerase at multiple sites on DNA templates. Here we report molecular cloning and biochemical characterization of the SIII p18 subunit, which is found to be a member of the ubiquitin homology (UbH) gene family and functions as a positive regulatory subunit of SIII. p18 is a 118-amino acid protein composed of an 84-residue N-terminal UbH domain fused to a 34-residue C-terminal tail. Mechanistic studies indicate that p18 activates SIII transcriptional activity above a basal level inherent in the SIII p110 and p15 subunits. Taken together, these findings establish a role for p18 in regulating the activity of the RNA polymerase II elongation complex, and they bring to light a function for a UbH domain protein in transcriptional regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glass gene is required for proper photo-receptor differentiation during development of the Drosophila eye glass codes for a DNA-binding protein containing five zinc fingers that we show is a transcriptional activator. A comparison of the sequences of the glass genes from two species of Drosophila and a detailed functional domain analysis of the Drosophila melanogaster glass gene reveal that both the DNA-binding domain and the transcriptional-activation domain are highly conserved between the two species. Analysis of the DNA-binding domain of glass indicates that the three carboxyl-terminal zinc fingers alone are necessary and sufficient for DNA binding. We also show that a deletion mutant of glass containing only the DNA-binding domain can behave in a dominant-negative manner both in vivo and in a cell culture assay that measures transcriptional activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional stimulation by the model activator GAL4-VP16 (a chimeric protein consisting of the DNA-binding domain of the yeast activator GAL4 and the acidic activation domain of the herpes simplex virus protein VP16) involves a series of poorly understood protein-protein interactions between the VP16 activation domain and components of the RNA polymerase II general transcription machinery. One of these interactions is the VP16-mediated binding and recruitment of transcription factor TFIIB. However, TATA box-binding protein (TBP)-associated factors (TAFs), or coactivators, are required for this interaction to culminate in productive transcription complex assembly, and one such TAF, Drosophila TAF40, reportedly forms a ternary complex with VP16 and TFIIB. Due to TFIIB's central role in gene activation, we sought to directly visualize the surfaces of this protein that mediate formation of the ternary complex. We developed an approach called protease footprinting in which the broad-specificity proteases chymotrypsin and alkaline protease were used to probe binding of 32P-end-labeled TFIIB to GAL4-VP16 or TAF40. Analysis of the cleavage products revealed two regions of TFIIB protected by VP16 from protease attack, one of which overlapped with a region protected by TAF40. The close proximity of the VP16 and TAF40 binding sites on the surface of TFIIB suggests that this region could act as a regulatory interface mediating the effects of activators and coactivators on transcription complex assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the Saccharomyces cerevisiae SSU71 gene were isolated as suppressors of a transcription factor TFIIB defect that confers both a cold-sensitive growth defect and a downstream shift in transcription start-site selection at the cyc1 locus. The ssu71-1 suppressor not only suppresses the conditional phenotype but also restores the normal pattern of transcription initiation at cyc1. In addition, the ssu71-1 suppressor confers a heat-sensitive phenotype that is dependent upon the presence of the defective form of TFIIB. Molecular and genetic analysis of the cloned SSU71 gene demonstrated that SSU71 is a single-copy essential gene encoding a highly charged protein with a molecular mass of 82,194 daltons. Comparison of the deduced Ssu71 amino acid sequence with the protein data banks revealed significant similarity to RAP74, the larger subunit of the human general transcription factor TFIIF. Moreover, Ssu71 is identical to p105, a component of yeast TFIIF. Taken together, these data demonstrate a functional interaction between TFIIB and the large subunit of TFIIF and that this interaction can affect start-site selection in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertebrate lens is a tissue composed of terminally differentiated fiber cells and anterior lens epithelial cells. The abundant, preferential expression of the soluble proteins called crystallins creates a transparent, refractive index gradient in the lens. Several transcription factors such as Pax6, Sox1, and L-Maf have been shown to regulate lens development. Here we show that mice lacking the transcription factor c-Maf are microphthalmic secondary to defective lens formation, specifically from the failure of posterior lens fiber elongation. The marked impairment of crystallin gene expression observed is likely explained by the ability of c-Maf to transactivate the crystallin gene promoter. Thus, c-Maf is required for the differentiation of the vertebrate lens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defined model systems consisting of physiologically spaced arrays of H3/H4 tetramer⋅5S rDNA complexes have been assembled in vitro from pure components. Analytical hydrodynamic and electrophoretic studies have revealed that the structural features of H3/H4 tetramer arrays closely resemble those of naked DNA. The reptation in agarose gels of H3/H4 tetramer arrays is essentially indistinguishable from naked DNA, the gel-free mobility of H3/H4 tetramer arrays relative to naked DNA is reduced by only 6% compared with 20% for nucleosomal arrays, and H3/H4 tetramer arrays are incapable of folding under ionic conditions where nucleosomal arrays are extensively folded. We further show that the cognate binding sites for transcription factor TFIIIA are significantly more accessible when the rDNA is complexed with H3/H4 tetramers than with histone octamers. These results suggest that the processes of DNA replication and transcription have evolved to exploit the unique structural properties of H3/H4 tetramer arrays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) was found to inhibit differentiation of myogenic cells only when they were grown to high density. Inhibition also occurred when myogenic cells were cocultured with other types of mesenchymal cells but not when they were cocultured with epithelial cells. It is therefore possible that some density-dependent signaling mediates the intracellular response to TGF-β. Within 30 min of treatment, TGF-β induced translocation of MEF2, but not MyoD, myogenin, or p21, to the cytoplasm of myogenic cells grown to high density. Translocation was reversible on withdrawal of TGF-β. By using immune electron microscopy and Western blot analysis on subcellular fractions, MEF2 was shown to be tightly associated with cytoskeleton membrane components. To test whether MEF2 export from the nucleus was causally related to the inhibitory action of TGF-β, we transfected C2C12 myoblasts with MEF2C containing the nuclear localization signal of simian virus 40 large T antigen (nlsSV40). Myogenic cells expressing the chimerical MEF2C/nlsSV40, but not wild-type MEF2C, retained this transcription factor in the nucleus and were resistant to the inhibitory action of TGF-β. We propose a mechanism in which the inhibition of myogenesis by TGF-β is mediated through MEF2 localization to the cytoplasm, thus preventing it from participating in an active transcriptional complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transduction pathways that mediate activation of serum response factor (SRF) by heterotrimeric G protein α subunits were characterized in transfection systems. Gαq, Gα12, and Gα13, but not Gαi, activate SRF through RhoA. When Gαq, α12, or α13 were coexpressed with a Rho-specific guanine nucleotide exchange factor GEF115, Gα13, but not Gαq or Gα12, showed synergistic activation of SRF with GEF115. The synergy between Gα13 and GEF115 depends on the N-terminal part of GEF115, and there was no synergistic effect between Gα13 and another Rho-specific exchange factor Lbc. In addition, the Dbl-homology (DH)-domain-deletion mutant of GEF115 inhibited Gα13- and Gα12-induced, but not GEF115 itself- or Gαq-induced, SRF activation. The DH-domain-deletion mutant also suppressed thrombin- and lysophosphatidic acid-induced SRF activation in NIH 3T3 cells, probably by inhibition of Gα12/13. The N-terminal part of GEF115 contains a sequence motif that is homologous to the regulator of G protein signaling (RGS) domain of RGS12. RGS12 can inhibit both Gα12 and Gα13. Thus, the inhibition of Gα12/13 by the DH-deletion mutant may be due to the RGS activity of the mutant. The synergism between Gα13 and GEF115 indicates that GEF115 mediates Gα13-induced activation of Rho and SRF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) regulates a broad range of biological processes, including cell growth, development, differentiation, and immunity. TGF-β signals through its cell surface receptor serine kinases that phosphorylate Smad2 or Smad3 proteins. Because Smad3 and its partner Smad4 bind to only 4-bp Smad binding elements (SBEs) in DNA, a central question is how specificity of TGF-β-induced transcription is achieved. We show that Smad3 selectively binds to two of the three SBEs in PE2.1, a TGF-β-inducible fragment of the plasminogen activator inhibitor-1 promoter, to mediate TGF-β-induced transcription; moreover, a precise 3-bp spacer between one SBE and the E-box, a binding site for transcription factor μE3 (TFE3), is essential for TGF-β-induced transcription. Whereas an isolated Smad3 MH1 domain binds to TFE3, TGF-β receptor-mediated phosphorylation of full-length Smad3 enhances its binding to TFE3. Together, these studies elucidate an important mechanism for specificity in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various transcription factors act as nuclear effectors of the cAMP-dependent signaling pathway. These are the products of three genes in the mouse, CREB, CRE modulator (CREM), and ATF-1. CREM proteins are thought to play important roles within the hypothalamic–pituitary axis and in the control of rhythmic functions in the pineal gland. We have generated CREM-mutant mice and investigated their response in a variety of behavioral tests. CREM-null mice show a drastic increase in locomotion. In contrast to normal mice, the CREM-deficient mice show equal locomotor activity during the circadian cycle. The anatomy of the hypothalamic suprachiasmatic nuclei, the center of the endogenous pacemaker, is normal in mutant mice. Remarkably, CREM mutant mice also elicit a different emotional state, revealed by a lower anxiety in two different behavioral models, but they preserve the conditioned reactiveness to stress. These results demonstrate the high degree of functional specificity of each cAMP-responsive transcription factor in behavioral control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the intracellular death program, hetero- and homodimerization of different anti- and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bfl-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviral-derived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A significant percentage of the gene clusters that contain the human genes for U1 small nuclear RNA (snRNA) or for U2 snRNA have been found associated with small nuclear domains, known as coiled bodies. We show here, by immunofluorescent labeling of human cells, that coiled bodies are enriched in factors required for the transcription of these snRNA genes. The 45-kDa γ-subunit of the transcription factor, proximal element sequence-binding transcription factor (PTF), which is specific for the snRNA genes, was found in high concentrations in coiled bodies, along with the general transcription factor TATA-box binding protein and a subset of RNA polymerase II. We show that the transcription factors and RNA polymerase II are concentrated in irregularly shaped domains that not only overlap with coiled bodies but also extend to their immediate surroundings. Fluorescent in situ hybridization showed that these domains can overlap with U2 snRNA genes adjacent to coiled bodies. In addition, we found the domains to contain newly synthesized RNA, visualized by 5-bromo-uridine triphosphate labeling. Our data suggest that coiled bodies are involved in the expression of snRNA genes, which leads us to propose the model that coiled bodies are associated with snRNA genes to facilitate and regulate their transcription. These findings point to a general principle of higher order organization of gene expression in the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The widely used immunosuppressant cyclosporine A (CSA) blocks nuclear translocation of the transcription factor, NF-AT (nuclear factor of activated T cells), preventing its activity. mRNA for several NF-AT isoforms has been shown to exist in cells outside of the immune system, suggesting a possible mechanism for side effects associated with CSA treatment. In this study, we demonstrate that CSA inhibits biochemical and morphological differentiation of skeletal muscle cells while having a minimal effect on proliferation. Furthermore, in vivo treatment with CSA inhibits muscle regeneration after induced trauma in mice. These results suggest a role for NF-AT–mediated transcription outside of the immune system. In subsequent experiments, we examined the activation and cellular localization of NF-AT in skeletal muscle cells in vitro. Known pharmacological inducers of NF-AT in lymphoid cells also stimulate transcription from an NF-AT–responsive reporter gene in muscle cells. Three isoforms of NF-AT (NF-ATp, c, and 4/x/c3) are present in the cytoplasm of muscle cells at all stages of myogenesis tested. However, each isoform undergoes calcium-induced nuclear translocation from the cytoplasm at specific stages of muscle differentiation, suggesting specificity among NF-AT isoforms in gene regulation. Strikingly, one isoform (NF-ATc) can preferentially translocate to a subset of nuclei within a single multinucleated myotube. These results demonstrate that skeletal muscle cells express functionally active NF-AT proteins and that the nuclear translocation of individual NF-AT isoforms, which is essential for the ability to coordinate gene expression, is influenced markedly by the differentiation state of the muscle cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously isolated the SKN7 gene in a screen designed to isolate new components of the G1-S cell cycle transcription machinery in budding yeast. We have now found that Skn7 associates with Mbp1, the DNA-binding component of the G1-S transcription factor DSC1/MBF. SKN7 and MBP1 show several genetic interactions. Skn7 overexpression is lethal and is suppressed by a mutation in MBP1. Similarly, high overexpression of Mbp1 is lethal and can be suppressed by skn7 mutations. SKN7 is also required for MBP1 function in a mutant compromised for G1-specific transcription. Gel-retardation assays indicate that Skn7 is not an integral part of MBF. However, a physical interaction between Skn7 and Mbp1 was detected using two-hybrid assays and GST pulldowns. Thus, Skn7 and Mbp1 seem to form a transcription factor independent of MBF. Genetic data suggest that this new transcription factor could be involved in the bud-emergence process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Schizosaccharomyces pombe the MBF (DSC1) complex mediates transcriptional activation at Start and is composed of a common subunit called Cdc10 in combination with two alternative DNA-binding partners, Res1 and Res2. It has been suggested that a high-activity MBF complex (at G1/S) is switched to a low-activity complex (in G2) by the incorporation of the negative regulatory subunit Res2. We have analyzed MBF proteinprotein interactions and find that both Res proteins are associated with Cdc10 throughout the cell cycle, arguing against this model. Furthermore we demonstrate that Res2 is capable of interacting with a mutant form of Cdc10 that has high transcriptional activity. It has been shown previously that both Res proteins are required for periodic cell cycle–regulated transcription. Therefore a series of Res1–Res2 hybrid molecules was used to determine the domains that are specifically required to regulate periodic transcription. In Res2 the nature of the C-terminal region is critical, and in both Res1 and Res2, a domain overlapping the N-terminal ankyrin repeat and a recently identified activation domain is important for mediating cell cycle–regulated transcription.