193 resultados para SINGLE-STRANDED-DNA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The herpes simplex virus type 1 origin of DNA replication, oriS, contains three copies of the recognition sequence for the viral initiator protein, origin binding protein (OBP), arranged in two palindromes. The central box I forms a short palindrome with box III and a long palindrome with box II. Single-stranded oriS adopts a conformation, oriS*, that is tightly bound by OBP. Here we demonstrate that OBP binds to a box III–box I hairpin with a 3′ single-stranded tail in oriS*. Mutations designed to destabilize the hairpin abolish the binding of OBP to oriS*. The same mutations also inhibit DNA replication. Second site complementary mutations restore binding of OBP to oriS* as well as the ability of mutated oriS to support DNA replication. OriS* is also an efficient activator of the hydrolysis of ATP by OBP. Sequence analyses show that a box III–box I palindrome is an evolutionarily conserved feature of origins of DNA replication from human, equine, bovine, and gallid alpha herpes viruses. We propose that oriS facilitates initiation of DNA synthesis in two steps and that OBP exhibits exquisite specificity for the different conformations oriS adopts at these stages. Our model suggests that distance-dependent cooperative binding of OBP to boxes I and II in duplex DNA is succeeded by specific recognition of a box III–box I hairpin in partially unwound DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experiments have measured the rate of replication of DNA catalyzed by a single enzyme moving along a stretched template strand. The dependence on tension was interpreted as evidence that T7 and related DNA polymerases convert two (n = 2) or more single-stranded template bases to double helix geometry in the polymerization site during each catalytic cycle. However, we find structural data on the T7 enzyme–template complex indicate n = 1. We also present a model for the “tuning” of replication rate by mechanical tension. This model considers only local interactions in the neighborhood of the enzyme, unlike previous models that use stretching curves for the entire polymer chain. Our results, with n = 1, reconcile force-dependent replication rate studies with structural data on DNA polymerase complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory of the unzipping of double-stranded DNA is presented and is compared to recent micromanipulation experiments. It is shown that the interactions that stabilize the double helix and the elastic rigidity of single strands simply determine the sequence-dependent ≈12-pN force threshold for DNA strand separation. Using a semimicroscopic model of the binding between nucleotide strands, we show that the greater rigidity of the strands when formed into double-stranded DNA, relative to that of isolated strands, gives rise to a potential barrier to unzipping. The effects of this barrier are derived analytically. The force to keep the extremities of the molecule at a fixed distance, the kinetic rates for strand unpairing at fixed applied force, and the rupture force as a function of loading rate are calculated. The dependence of the kinetics and of the rupture force on molecule length is also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a novel DNA damage binding activity in nuclear extracts from a normal human fibroblast cell strain. This protein was identified using electrophoretic mobility shift assays of immunopurified UV-irradiated oligonucleotide substrates containing a single, site-specific cyclobutane pyrimidine dimer or a pyrimidine (6-4) pyrimidinone photoproduct. Compared with the (6-4) photoproduct, which displayed similar levels of binding in double and single-stranded substrates, the protein showed somewhat lower affinity for the cyclobutane dimer in a single-stranded oligonucleotide and negligible binding in double-stranded DNA. The specificity and magnitude of binding was similar in cells with normal excision repair (GM637) and repair-deficient cells from xeroderma pigmentosum groups A (XP12RO) and E (XP2RO). An apparent molecular mass of 66 kDa consisting of two subunits of approximately 22 and approximately 44 kDa was determined by Southwestern analysis. Cell cycle studies using centrifugal cell elutriation indicated that the binding activity was significantly greater in G1 phase compared with S phase in a human lymphoblast cell line. Gel supershift analysis using an anti-replication protein A antibody showed that the binding protein was not antigenically related to the human single-stranded binding protein. Taken together, these data suggest that this activity represents a novel DNA damage binding protein that, in addition to a putative role in excision repair, may also function in cell cycle or gene regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinational repair of double-stranded DNA gaps was investigated in Ustilago maydis. The experimental system was designed for analysis of repair of an autonomously replicating plasmid containing a cloned gene disabled by an internal deletion. It was discovered that crossing over rarely accompanied gap repair. The strong bias against crossing over was observed in three different genes regardless of gap size. These results indicate that gap repair in U. maydis is unlikely to proceed by the mechanism envisioned in the double-stranded break repair model of recombination, which was developed to account for recombination in Saccharomyces cerevisiae. Experiments aimed at exploring processing of DNA ends were performed to gain understanding of the mechanism responsible for the observed bias. A heterologous insert placed within a gap in the coding sequence of two different marker genes strongly inhibited repair if the DNA was cleaved at the promoter-proximal junction joining the insert and coding sequence but had little effect on repair if the DNA was cleaved at the promoter-distal junction. Gene conversion of plasmid restriction fragment length polymorphism markers engineered in sequences flanking both sides of a gap accompanied repair but was directionally biased. These results are interpreted to mean that the DNA ends flanking a gap are subject to different types of processing. A model featuring a single migrating D-loop is proposed to explain the bias in gap repair outcome based on the observed asymmetry in processing the DNA ends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumor suppressor p53 contributes to maintaining genome stability by inducing a cell cycle arrest or apoptosis in response to conditions that generate DNA damage. Nuclear injection of linearized plasmid DNA, circular DNA with a large gap, or single-stranded circular phagemid is sufficient to induce a p53-dependent arrest. Supercoiled and nicked plasmid DNA, and circular DNA with a small gap were ineffective. Titration experiments indicate that the arrest mechanism in normal human fibroblasts can be activated by very few double strand breaks, and only one may be sufficient. Polymerase chain reaction assays showed that end-joining activity is low in serum-arrested human fibroblasts, and that higher joining activity occurs as cells proceed through G1 or into S phase. We propose that the exquisite sensitivity of the p53-dependent G1 arrest is partly due to inefficient repair of certain types of DNA damage in early G1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results presented here demonstrate that the thermodynamics of oligocation binding to polymeric and oligomeric DNA are not equivalent because of long-range electrostatic effects. At physiological cation concentrations (0.1-0.3 M) the binding of an oligolysine octacation KWK6-NH2 (+8 charge) to single-stranded poly(dT) is much stronger per site and significantly more salt concentration dependent than the binding of the same ligand to an oligonucleotide, dT(pdT)10 (-10 charge). These large differences are consistent with Poisson-Boltzmann calculations for a model that characterizes the charge distributions with key preaveraged structural parameters. Therefore, both the experimental and the theoretical results presented here show that the polyelectrolyte character of a polymeric nucleic acid makes a large contribution to both the magnitude and the salt concentration dependence of its binding interactions with simple oligocationic ligands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mutagenic activity of the major DNA adduct formed by the liver carcinogen aflatoxin B1 (AFB1) was investigated in vivo. An oligonucleotide containing a single 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua) adduct was inserted into the single-stranded genome of bacteriophage M13. Replication in SOS-induced Escherichia coli yielded a mutation frequency for AFB1-N7-Gua of 4%. The predominant mutation was G --> T, identical to the principal mutation in human liver tumors believed to be induced by aflatoxin. The G --> T mutations of AFB1-N7-Gua, unlike those (if the AFB1-N7-Gua-derived apurinic site, were much more strongly dependent on MucAB than UmuDC, a pattern matching that in intact cells treated with the toxin. It is concluded that the AFB1-N7-Gua adduct, and not the apurinic site, has genetic requirements for mutagenesis that best explain mutations in aflatoxin-treated cells. While most mutations were targeted to the site of the lesion, a significant fraction (13%) occurred at the base 5' to the modified guanine. In contrast, the apurinic site-containing genome gave rise only to targeted mutations. The mutational asymmetry observed for AFB1-N7-Gua is consistent with structural models indicating that the aflatoxin moiety of the aflatoxin guanine adduct is covalently intercalated on the 5' face of the guanine residue. These results suggest a molecular mechanism that could explain an important step in the carcinogenicity of aflatoxin B1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strategy of "sequence scanning" is proposed for rapid acquisition of sequence from clones such as bacteriophage P1 clones, cosmids, or yeast artificial chromosomes. The approach makes use of a special vector, called LambdaScan, that reliably yields subclones with inserts in the size range 8-12 kb. A number of subclones, typically 96 or 192, are chosen at random, and the ends of the inserts are sequenced using vector-specific primers. Then long-range spectrum PCR is used to order and orient the clones. This combination of shotgun and directed sequencing results in a high-resolution physical map suitable for the identification of coding regions or for comparison of sequence organization among genomes. Computer simulations indicate that, for a target clone of 100 kb, the scanning of 192 subclones with sequencing reads as short as 350 bp results in an approximate ratio of 1:2:1 of regions of double-stranded sequence, single-stranded sequence, and gaps. Longer sequencing reads tip the ratio strongly toward increased double-stranded sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During meiosis in Saccharomyces cerevisiae, the first chemical step in homologous recombination is the occurrence of site-specific DNA double-strand breaks (DSBs). In wild-type cells, these breaks undergo resection of their 5' strand termini to yield molecules with 3' single-stranded tails. We have further characterized the breaks that accumulate in rad50S mutant stains defective in DSB resection. We find that these DSBs are tightly associated with protein via what appears to be a covalent linkage. When genomic DNA is prepared from meiotic rad50S cultures without protease treatment steps, the restriction fragments diagnostic of DSBs selectively partition to the organic-aqueous interphase in phenol extractions and band at lower than normal density in CsCl density gradients. Selective partitioning and decreased buoyant density are abolished if the DNA is treated with proteinase K prior to analysis. Similar results are obtained with sae2-1 mutant strains, which have phenotypes identical to rad50S mutants. The protein is bound specifically to the 5' strand termini of DSBs and is present at both 5' ends in at least a fraction of breaks. The stability of the complex to various protein denaturants and the strand specificity of the attachment are most consistent with a covalent linkage to DSB termini. We propose that the DSB-associated protein is the catalytic subunit of the meiotic recombination initiation nuclease and that it cleaves DNA via a covalent protein-DNA intermediate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A yeast gene has been identified by screening for DNA replication mutants using a permeabilized cell replication assay. The mutant is temperature sensitive for growth and shows a cell cycle phenotype typical of DNA replication mutants. RNA synthesis is normal in the mutant but DNA synthesis ceases upon shift to the nonpermissive temperature. The DNA2 gene was cloned by complementation of the dna2ts gene phenotype. The gene is essential for viability. The gene encodes a 172-kDa protein with characteristic DNA helicase motifs. A hemagglutinin epitope-Dna2 fusion protein was prepared and purified by conventional and immunoaffinity chromatography. The purified protein is a DNA-dependent ATPase and has 3' to 5' DNA helicase activity specific for forked substrates. A nuclease activity that endonucleolytically cleaves DNA molecules having a single-stranded 5' tail adjacent to a duplex region copurifies through all steps with the fusion protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The yeast gene KEM1 (also named SEP1/DST2/XRN1/RAR5) produces a G4-DNA-dependent nuclease that binds to G4 tetraplex DNA structure and cuts in a single-stranded region 5' to the G4 structure. G4-DNA generated from yeast telomeric oligonucleotides competitively inhibits the cleavage reaction, suggesting that this enzyme may interact with yeast telomeres in vivo. Homozygous deletions of the KEM1 gene in yeast block meiosis at the pachytene stage, which is consistent with the hypothesis that G4 tetraplex DNA may be involved in homologous chromosome pairing during meiosis. We conjectured that the mitotic defects of kem1/sep1 mutant cells, such as a higher chromosome loss rate, are also due to failure in processing G4-DNA, especially at telomeres. Here we report two phenotypes associated with a kem1-null allele, cellular senescence and telomere shortening, that provide genetic evidence that G4 tetraplex DNA may play a role in telomere functioning. In addition, our results reveal that chromosome ends in the same cells behave differently in a fashion dependent on the KEM1 gene product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescent dye-labeled DNA primers have been developed that exploit fluorescence energy transfer (ET) to optimize the absorption and emission properties of the label. These primers carry a fluorescein derivative at the 5' end as a common donor and other fluorescein and rhodamine derivatives attached to a modified thymidine residue within the primer sequence as acceptors. Adjustment of the donor-acceptor spacing through the placement of the modified thymidine in the primer sequence allowed generation of four primers, all having strong absorption at a common excitation wavelength (488 nm) and fluorescence emission maxima of 525, 555, 580, and 605 nm. The ET efficiency of these primers ranges from 65% to 97%, and they exhibit similar electrophoretic mobilities by gel electrophoresis. With argon-ion laser excitation, the fluorescence of the ET primers and of the DNA sequencing fragments generated with ET primers is 2- to 6-fold greater than that of the corresponding primers or fragments labeled with single dyes. The higher fluorescence intensity of the ET primers allows DNA sequencing with one-fourth of the DNA template typically required when using T7 DNA polymerase. With single-stranded M13mp18 DNA as the template, a typical sequencing reaction with ET primers on a commercial sequencer provided DNA sequences with 99.8% accuracy in the first 500 bases. ET primers should be generally useful in the development of other multiplex DNA sequencing and analysis methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linked polyamides bind in the minor groove of double-stranded DNA in a partially sequence-specific manner. This report analyzes the theoretical limits of DNA sequence discrimination by linked polyamides composed of two to four different types of heterocyclic rings, determining (i) the optimal choice of base-binding specificity for each ring and (ii) the optimal design for a polyamide composed of these rings to target a given DNA sequence and designed to maximize the fraction of the total polyamide binding to the specified target sequence relative to all other sequences. The results show that, fortuitously, polyamides composed of pyrrole, a naturally occurring G-excluding element, and imidazole, a rationally designed G-favoring element, have features similar to the theoretical optimum design for polyamides composed of two different rings. The results also show that, in polyamides composed of two or three types of heterocyclic rings, choosing a nonspecific “placeholder” ring, which binds equally strongly to each of the four bases, along with one or two base-specific rings will often enhance sequence specificity over a polyamide composed entirely of base-specific rings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The formation of heteroduplex joints in Escherichia coli recombination is initiated by invasion of double-stranded DNA by a single-stranded homologue. To determine the polarity of the invasive strand, linear molecules with direct terminal repeats were released by in vivo restriction of infecting chimeric phage DNA and heteroduplex products of intramolecular recombination were analyzed. With this substrate, the invasive strand is expected to be incorporated into the circular crossover product and the complementary strand is expected to be incorporated into the reciprocal linear product. Strands of both polarities were incorporated into heteroduplex structures, but only strands ending 3′ at the break were incorporated into circular products. This result indicates that invasion of the 3′-ending strand initiates the heteroduplex joint formation and that the complementary 5′-ending strand is incorporated into heteroduplex structures in the process of reciprocal strand exchange. The polarity of the invasive strand was not affected by recD, recJ, or xonA mutations. However, xonA and recJ mutations increased the proportion of heteroduplexes containing 5′-ending strands. This observation suggests that RecJ exonuclease and exonuclease I may enhance recombination by degrading the displaced strands during branch migration and thereby causing strand exchange to be unidirectional.