215 resultados para S-RNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic mRNA transport and local translation at individual potentiated synapses may represent an elegant way to form synaptic memory. Recently, we characterized Staufen, a double-stranded RNA-binding protein, in rat hippocampal neurons and showed its presence in large RNA-containing granules, which colocalize with microtubules in dendrites. In this paper, we transiently transfect hippocampal neurons with human Staufen-green fluorescent protein (GFP) and find fluorescent granules in the somatodendritic domain of these cells. Human Stau-GFP granules show the same cellular distribution and size and also contain RNA, as already shown for the endogenous Stau particles. In time-lapse videomicroscopy, we show the bidirectional movement of these Staufen-GFP–labeled granules from the cell body into dendrites and vice versa. The average speed of these particles was 6.4 μm/min with a maximum velocity of 24.3 μm/min. Moreover, we demonstrate that the observed assembly into granules and their subsequent dendritic movement is microtubule dependent. Taken together, we have characterized a novel, nonvesicular, microtubule-dependent transport pathway involving RNA-containing granules with Staufen as a core component. This is the first demonstration in living neurons of movement of an essential protein constituent of the mRNA transport machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Nucleolar Localization Elements (NoLEs) of Xenopus laevis U3 small nucleolar RNA (snoRNA) have been defined. Fluorescein-labeled wild-type U3 snoRNA injected into Xenopus oocyte nuclei localized specifically to nucleoli as shown by fluorescence microscopy. Injection of mutated U3 snoRNA revealed that the 5′ region containing Boxes A and A′, known to be important for rRNA processing, is not essential for nucleolar localization. Nucleolar localization of U3 snoRNA was independent of the presence and nature of the 5′ cap and the terminal stem. In contrast, Boxes C and D, common to the Box C/D snoRNA family, are critical elements for U3 localization. Mutation of the hinge region, Box B, or Box C′ led to reduced U3 nucleolar localization. Results of competition experiments suggested that Boxes C and D act in a cooperative manner. It is proposed that Box B facilitates U3 snoRNA nucleolar localization by the primary NoLEs (Boxes C and D), with the hinge region of U3 subsequently base pairing to the external transcribed spacer of pre-rRNA, thus positioning U3 snoRNA for its roles in rRNA processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear domains, called cleavage bodies, are enriched in the RNA 3′-processing factors CstF 64 kDa and and CPSF 100 kDa. Cleavage bodies have been found either overlapping with or adjacent to coiled bodies. To determine whether the spatial relationship between cleavage bodies and coiled bodies was influenced by the cell cycle, we performed cell synchronization studies. We found that in G1 phase cleavage bodies and coiled bodies were predominantly coincident, whereas in S phase they were mostly adjacent to each other. In G2 cleavage bodies were often less defined or absent, suggesting that they disassemble at this point in the cell cycle. A small number of genetic loci have been reported to be juxtaposed to coiled bodies, including the genes for U1 and U2 small nuclear RNA as well as the two major histone gene clusters. Here we show that cleavage bodies do not overlap with small nuclear RNA genes but do colocalize with the histone genes next to coiled bodies. These findings demonstrate that the association of cleavage bodies and coiled bodies is both dynamic and tightly regulated and suggest that the interaction between these nuclear neighbors is related to the cell cycle–dependent expression of histone genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have characterized two Saccharomyces cerevisiae proteins, Sro9p and Slf1p, which contain a highly conserved motif found in all known La proteins. Originally described as an autoantigen in patients with rheumatic disease, the La protein binds to newly synthesized RNA polymerase III transcripts. In yeast, the La protein homologue Lhp1p is required for the normal pathway of tRNA maturation and also stabilizes newly synthesized U6 RNA. We show that deletions in both SRO9 and SLF1 are not synthetically lethal with a deletion in LHP1, indicating that the three proteins do not function in a single essential process. Indirect immunofluorescence microscopy reveals that although Lhp1p is primarily localized to the nucleus, Sro9p is cytoplasmic. We demonstrate that Sro9p and Slf1p are RNA-binding proteins that associate preferentially with translating ribosomes. Consistent with a role in translation, strains lacking either Sro9p or Slf1p are less sensitive than wild-type strains to certain protein synthesis inhibitors. Thus, Sro9p and Slf1p define a new and possibly evolutionarily conserved class of La motif-containing proteins that may function in the cytoplasm to modulate mRNA translation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleolar localization elements (NoLEs) of U17 small nucleolar RNA (snoRNA), which is essential for rRNA processing and belongs to the box H/ACA snoRNA family, were analyzed by fluorescence microscopy. Injection of mutant U17 transcripts into Xenopus laevis oocyte nuclei revealed that deletion of stems 1, 2, and 4 of U17 snoRNA reduced but did not prevent nucleolar localization. The deletion of stem 3 had no adverse effect. Therefore, the hairpins of the hairpin–hinge–hairpin–tail structure formed by these stems are not absolutely critical for nucleolar localization of U17, nor are sequences within stems 1, 3, and 4, which may tether U17 to the rRNA precursor by base pairing. In contrast, box H and box ACA are major NoLEs; their combined substitution or deletion abolished nucleolar localization of U17 snoRNA. Mutation of just box H or just the box ACA region alone did not fully abolish the nucleolar localization of U17. This indicates that the NoLEs of the box H/ACA snoRNA family function differently from the bipartite NoLEs (conserved boxes C and D) of box C/D snoRNAs, where mutation of either box alone prevents nucleolar localization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chimeric RNA/DNA oligonucleotides (“chimeraplasts”) have been shown to induce single base alterations in genomic DNA both in vitro and in vivo. The mdx mouse strain has a point mutation in the dystrophin gene, the consequence of which is a muscular dystrophy resulting from deficiency of the dystrophin protein in skeletal muscle. To test the feasibility of chimeraplast-mediated gene therapy for muscular dystrophies, we used a chimeraplast (designated “MDX1”) designed to correct the point mutation in the dystrophin gene in mdx mice. After direct injection of MDX1 into muscles of mdx mice, immunohistochemical analysis revealed dystrophin-positive fibers clustered around the injection site. Two weeks after single injections into tibialis anterior muscles, the maximum number of dystrophin-positive fibers (approximately 30) in any muscle represented 1–2% of the total number of fibers in that muscle. Ten weeks after single injections, the range of the number of dystrophin-positive fibers was similar to that seen after 2 wk, suggesting that the expression was stable, as would be predicted for a gene-conversion event. Staining with exon-specific antibodies showed that none of these were “revertant fibers.” Furthermore, dystrophin from MDX1-injected muscles was full length by immunoblot analysis. No dystrophin was detectable by immunohistochemical or immunoblot analysis after control chimeraplast injections. Finally, reverse transcription–PCR analysis demonstrated the presence of transcripts with the wild-type dystrophin sequence only in mdx muscles injected with MDX1 chimeraplasts. These results provide the foundation for further studies of chimeraplast-mediated gene therapy as a therapeutic approach to muscular dystrophies and other genetic disorders of muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of cDNA clones encoding large-size RNA molecules of biological interest, like coronavirus genomes, which are among the largest mature RNA molecules known to biology, has been hampered by the instability of those cDNAs in bacteria. Herein, we show that the application of two strategies, cloning of the cDNAs into a bacterial artificial chromosome and nuclear expression of RNAs that are typically produced within the cytoplasm, is useful for the engineering of large RNA molecules. A cDNA encoding an infectious coronavirus RNA genome has been cloned as a bacterial artificial chromosome. The rescued coronavirus conserved all of the genetic markers introduced throughout the sequence and showed a standard mRNA pattern and the antigenic characteristics expected for the synthetic virus. The cDNA was transcribed within the nucleus, and the RNA translocated to the cytoplasm. Interestingly, the recovered virus had essentially the same sequence as the original one, and no splicing was observed. The cDNA was derived from an attenuated isolate that replicates exclusively in the respiratory tract of swine. During the engineering of the infectious cDNA, the spike gene of the virus was replaced by the spike gene of an enteric isolate. The synthetic virus replicated abundantly in the enteric tract and was fully virulent, demonstrating that the tropism and virulence of the recovered coronavirus can be modified. This demonstration opens up the possibility of employing this infectious cDNA as a vector for vaccine development in human, porcine, canine, and feline species susceptible to group 1 coronaviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bacillus subtilis pyr operon is regulated by exogenous pyrimidines by a transcriptional attenuation mechanism. Transcription in vitro from pyr DNA templates specifying attenuation regions yielded terminated and read-through transcripts of the expected lengths. Addition of the PyrR regulatory protein plus UMP led to greatly increased termination. Synthetic antisense deoxyoligonucleotides were used to probe possible secondary structures in the pyr mRNA that were proposed to play roles in controlling attenuation. Oligonucleotides predicted to disrupt terminator structures suppressed termination, whereas oligonucleotides predicted to disrupt the stem of antiterminator stem-loops strongly promoted termination at the usual termination site. Oligonucleotides that disrupt a previously unrecognized stem-loop structure, called the anti-antiterminator, the formation of which interferes with formation of the downstream antiterminator, suppressed termination. We propose that transcriptional attenuation of the pyr operon is governed by switching between alternative antiterminator versus anti-antiterminator plus terminator structures, and that PyrR acts by UMP-dependent binding to and stabilization of the anti-antiterminator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebrate cells contain a large number of small nucleolar RNA (snoRNA) species, the vast majority of which bind fibrillarin. Most of the fibrillarin-associated snoRNAs can form 10- to 21-nt duplexes with rRNA and are thought to guide 2′-O-methylation of selected nucleotides in rRNA. These include mammalian UHG (U22 host gene)-encoded U25–U31 snoRNAs. We have characterized two novel human snoRNA species, U62 and U63, which similarly exhibit 15- (with one interruption) and 12-nt complementarities and are therefore predicted to direct 2′-O-methylation of A590 in 18S and A4531 in 28S rRNA, respectively. To establish the function of antisense snoRNAs in vertebrates, we exploited the Xenopus oocyte system. Cloning of the Xenopus U25–U31 snoRNA genes indicated that they are encoded within multiple homologs of mammalian UHG. Depletion of U25 from the Xenopus oocyte abolished 2′-O-methylation of G1448 in 18S rRNA; methylation could be restored by injecting either the Xenopus or human U25 transcript into U25-depleted oocytes. Comparison of Xenopus and human U25 sequences revealed that only boxes C, D, and D′, as well as the 18S rRNA complement, were invariant, suggesting that they may be the only elements required for U25 snoRNA stability and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient 3′-end processing of cell cycle-regulated mammalian histone premessenger RNAs (pre-mRNAs) requires an upstream stem–loop and a histone downstream element (HDE) that base pairs with the U7 small ribonuclearprotein. Insertions between these elements have two effects: the site of cleavage moves in concert with the HDE and processing efficiency declines. We used Xenopus oocytes to ask whether compensatory length insertions in the human U7 RNA could restore the fidelity and efficiency of processing of mouse histone insertion pre-mRNAs. An insertion of 5 nt into U7 RNA that extends its complementary to the HDE compensated for both defects in processing of a 5-nt insertion substrate; a noncomplementary insertion into U7 did not. Yet, the noncomplementary insertion mutant U7 was shown to be active on insertion substrates further mutated to allow base pairing. Our results suggest that the histone pre-mRNA becomes rigidified upstream of its HDE, allowing the bound U7 small ribonucleoprotein to measure from the HDE to the cleavage site. Such a mechanism may be common to other RNA measuring systems. To our knowledge, this is the first demonstration of length suppression in an RNA processing system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide the first report, to our knowledge, of a helper-independent system for rescuing a segmented, negative-strand RNA genome virus entirely from cloned cDNAs. Plasmids were constructed containing full-length cDNA copies of the three Bunyamwera bunyavirus RNA genome segments flanked by bacteriophage T7 promoter and hepatitis delta virus ribozyme sequences. When cells expressing both bacteriophage T7 RNA polymerase and recombinant Bunyamwera bunyavirus proteins were transfected with these plasmids, full-length antigenome RNAs were transcribed intracellularly, and these in turn were replicated and packaged into infectious bunyavirus particles. The resulting progeny virus contained specific genetic tags characteristic of the parental cDNA clones. Reassortant viruses containing two genome segments of Bunyamwera bunyavirus and one segment of Maguari bunyavirus were also produced following transfection of appropriate plasmids. This accomplishment will allow the full application of recombinant DNA technology to manipulate the bunyavirus genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have expanded the field of “DNA computers” to RNA and present a general approach for the solution of satisfiability problems. As an example, we consider a variant of the “Knight problem,” which asks generally what configurations of knights can one place on an n × n chess board such that no knight is attacking any other knight on the board. Using specific ribonuclease digestion to manipulate strands of a 10-bit binary RNA library, we developed a molecular algorithm and applied it to a 3 × 3 chessboard as a 9-bit instance of this problem. Here, the nine spaces on the board correspond to nine “bits” or placeholders in a combinatorial RNA library. We recovered a set of “winning” molecules that describe solutions to this problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein synthesis is believed to be initiated with the amino acid methionine because the AUG translation initiation codon of mRNAs is recognized by the anticodon of initiator methionine transfer RNA. A group of positive-stranded RNA viruses of insects, however, lacks an AUG translation initiation codon for their capsid protein gene, which is located at the downstream part of the genome. The capsid protein of one of these viruses, Plautia stali intestine virus, is synthesized by internal ribosome entry site-mediated translation. Here we report that methionine is not the initiating amino acid in the translation of the capsid protein in this virus. Its translation is initiated with glutamine encoded by a CAA codon that is the first codon of the capsid-coding region. The nucleotide sequence immediately upstream of the capsid-coding region interacts with a loop segment in the stem–loop structure located 15–43 nt upstream of the 5′ end of the capsid-coding region. The pseudoknot structure formed by this base pair interaction is essential for translation of the capsid protein. This mechanism for translation initiation differs from the conventional one in that the initiation step controlled by the initiator methionine transfer RNA is not necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenosine deaminases that act on RNA (ADARs) are RNA-editing enzymes that convert adenosine to inosine within double-stranded RNA. In the 12 years since the discovery of ADARs only a few natural substrates have been identified. These substrates were found by chance, when genomically encoded adenosines were identified as guanosines in cDNAs. To advance our understanding of the biological roles of ADARs, we developed a method for systematically identifying ADAR substrates. In our first application of the method, we identified five additional substrates in Caenorhabditis elegans. Four of those substrates are mRNAs edited in untranslated regions, and one is a noncoding RNA edited throughout its length. The edited regions are predicted to form long hairpin structures, and one of the RNAs encodes POP-1, a protein involved in cell fate decisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive assay using biotinylated ubiquitin revealed extensive ubiquitination of the large subunit of RNA polymerase II during incubations of transcription reactions in vitro. Phosphorylation of the repetitive carboxyl-terminal domain of the large subunit was a signal for ubiquitination. Specific inhibitors of cyclin-dependent kinase (cdk)-type kinases suppress the ubiquitination reaction. These kinases are components of transcription factors and have been shown to phosphorylate the carboxyl-terminal domain. In both regulation of transcription and DNA repair, phosphorylation of the repetitive carboxyl-terminal domain by kinases might signal degradation of the polymerase.